Charge Behavior of Low-Dimensional V2O5/Graphene Nanoribbons Oxides Nanocomposites under Irradiation of Visible Light and its Application

Article Preview

Abstract:

Due to its outstanding photo-catalysis properties, low-dimensional V2O5 has many important applications in lithium ion batteries, supercapacitors, electrochromic devices, photocatalysts, sensors, et al. As good photocatalysts for organic pollutants, some key issues of photocatalysts are charge generation, separation, transfer of nanocomposites under irradiation of visible light. To improve their important properties and pave the effective conductive channels for charge transfer and separation, low-dimensional V2O5/graphene nanoribbons nanocomposites were prepared. The emphasis is put on adsorption response to VOC of nanocomposite based on the QCM (quartz crystal microbalance) device. In order to investigate the mechanism of charge-generated by visible light, the photoconductivity response to visible light and 808 nm laser with low-power were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate. Some good results were obtained. This illustrates that this nanocomposite can easily produce the charge-generate with visible light and 808 nm laser with low-power, avoiding the recombination of charge-generate by light. It would be good applications in remove the organic pollutants with photocatalysis effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-210

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, C. Cui, G. Gao, X. Zhou, J. Wu, H. Yang, Q. Li and G. Wu, A new method to prepare vanadium oxide nano-urchins as a cathode for lithium ion batteries, RSC Adv. 5(2015)47522–47528.

DOI: 10.1039/c5ra02508g

Google Scholar

[2] X. Sun, C. Zhou, M. Xie, T. Hu, H. Sun, G. Xin, G. Wang, S. M. Georgec and J. Lian, Amorphous vanadium oxide coating on grapheme by atomic layer deposition for stable high energy lithium ion anodes, Chem. Commun. 50(2014) 10703-10706.

DOI: 10.1039/c4cc04580g

Google Scholar

[3] M. J. Armstrong, D. M. Burke, T. Gabriel, C. O'Regan, C. O'Dwyer, N. Petkova and J. D. Holmes, Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries, J. Mater. Chem. A. 1(2013)12568–12578.

DOI: 10.1039/c3ta12652h

Google Scholar

[4] X. Jia, L. Zhang, R. Zhang, Y. Lu and F. Wei, Carbon nanotube-penetrated mesoporous V2O5 microspheres as high-performance cathode materials for lithium-ion batteries, RSC Adv. 4(2014)21018–21022.

DOI: 10.1039/c4ra01316f

Google Scholar

[5] W. Cheng, G. Zeng and M. Niederberger, Design of vanadium oxide core–shell nanoplatelets for lithium ion storage, J. Mater. Chem. A. 3(2015)2861–2868.

DOI: 10.1039/c4ta05495d

Google Scholar

[6] Z. Li, Q. Zhu, S. Huang, S. Jiang, S. Lu, W. Chen and G. S. Zakharova, Interpenetrating network V2O5 nanosheets/carbon nanotubes nanocomposite for fast lithium storage, RSC Adv. 4(2014)46624–46630.

DOI: 10.1039/c4ra07937j

Google Scholar

[7] X. Zhou, G. Wu, J. Wu, H. Yang, J. Wang, G. Gao, R. Cai and Q. Yan, Multiwalled carbon nanotubes–V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries, J. Mater. Chem. A. 1(2013).

DOI: 10.1039/c3ta13143b

Google Scholar

[8] Y. Zheng, H. Ding, E. Uchaker, X. Tao, J. Chen, Q. Zhang and G. Cao, Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties, J. Mater. Chem. A. 3(2015)1979–(1985).

DOI: 10.1039/c4ta05500d

Google Scholar

[9] J. Cheng, B. Wang, H. L. Xin, G. Yang, H. Cai, F. Nie and H. Huang, Self-assembled V2O5 nanosheets/reduced grapheme oxide hierarchical nanocomposite as a highperformance cathode material for lithium ion batteries, J. Mater. Chem. A. 1(2013).

DOI: 10.1039/c3ta12066j

Google Scholar

[10] G. Li, Y. Qiu, Y. Hou, H. Li, L. Zhou, H. Deng and Y. Zhang, Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage, J. Mater. Chem. A. 3(2015)1103–1109.

DOI: 10.1039/c4ta04864d

Google Scholar

[11] H. Pang, P. Cheng, H. Yang, J. Lu, C. Guo, G. Ning and C. Li, Template-free bottom-up synthesis of yolk–shell vanadium oxide as high performance cathode for lithium ion batteries, Chem. Commun. 49(2013)1536—1538.

DOI: 10.1039/c2cc38244j

Google Scholar

[12] Q. An, P. Zhang, Q. Wei, L. He, F. Xiong, J. Sheng, Q. Wang and L. Mai, Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance, J. Mater. Chem. A. 2(2014).

DOI: 10.1039/c3ta14818a

Google Scholar

[13] A. Pan, H. Wu, L. Zhang and X (David) Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties, Energy Environ. Sci. 6(2013)1476–1479.

DOI: 10.1039/c3ee40260f

Google Scholar

[14] X. Yu, Z. Lu, G. Zhang, X. Lei, J. Liu, L. Wang and X. Sun, V2O5 nanostructure arrays: controllable synthesis and performance as cathodes for lithium ion batteries, RSC Adv. 3(2013)19937–19941.

DOI: 10.1039/c3ra42650e

Google Scholar

[15] L. Shao, J. Jeon and J. L. Lutkenhaus, Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage, J. Mater. Chem. A. 2(2014)14421–14428.

DOI: 10.1039/c4ta02911a

Google Scholar

[16] L. Cao, J. Zhu, Y. Li, P. Xiao, Y. Zhang, S. Zhang and S. Yang, Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage, J. Mater. Chem. A. 2(2014)13136–13142.

DOI: 10.1039/c4ta02229g

Google Scholar

[17] M. Bai, T. Liu, F. Luan, Y. Li and X. Liu, Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors, J. Mater. Chem. A. 2(2014)10882–10888.

DOI: 10.1039/c3ta15391f

Google Scholar

[18] T. Qian, N. Xu, J. Zhou, T. Yang, X. Liu, X. Shen, J. Liang and C. Yan, Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors, J. Mater. Chem. A. 3(2015)488–493.

DOI: 10.1039/c4ta05769d

Google Scholar

[19] H. Li, K. Jiao, L. Wang, C. Wei, X. Li and B. Xie, Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors, J. Mater. Chem. A. 2(2014)18806–18815.

DOI: 10.1039/c4ta04062g

Google Scholar

[20] B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, MnO2 grafted V2O5 nanostructures: formation mechanism, morphology and supercapacitive features, Cryst. Eng. Comm. 16(2014)10711–10720.

DOI: 10.1039/c4ce01476f

Google Scholar

[21] H. Wang, H. Yi, X. Chen and X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors, J. Mater. Chem. A. 2(2014)1165–1173.

DOI: 10.1039/c3ta13932h

Google Scholar

[22] Y. Wu, G. Gao and G. Wu, Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life, J. Mater. Chem. A. 3(2015)1828–1832.

DOI: 10.1039/c4ta05537c

Google Scholar

[23] D. H. Nagaraju, Q. Wang, P. Beaujuge and H. N. Alshareef, Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors, J. Mater. Chem. A. 2(2014)17146–17152.

DOI: 10.1039/c4ta03731f

Google Scholar

[24] B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, V2O5/functionalized MWCNT hybrid nanocomposite: the fabrication and its enhanced supercapacitive performance, RSC Adv. 4(2014)37437–37445.

DOI: 10.1039/c4ra05942e

Google Scholar

[25] M. E. A. Warwickab and R. Binions, Advances in thermochromic vanadium dioxide films, J. Mater. Chem. A. 2(2014)3275–3292.

DOI: 10.1039/c3ta14124a

Google Scholar

[26] Y. Lu, L. Liu, D. Mandler and P. S. Lee, High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices, J. Mater. Chem. C. 1(2013)7380–7386.

DOI: 10.1039/c3tc31508h

Google Scholar

[27] Z. Tong, H. Yang, L. Na, H. Qu, X. Zhang, J. Zhao and Y. Li, Versatile displays based on a 3-dimensionally ordered macroporous vanadium oxide film for advanced electrochromic devices, J. Mater. Chem. C. 3(2015)3159—3166.

DOI: 10.1039/c5tc00029g

Google Scholar

[28] B. Liu, X. Li, Q. Zhao, J. Liu, S. Liu, S. Wang, M. Tadé, Insight into the Mechanism of Photocatalytic Degradation of Gaseous o-dichlorobenzene over Flower-Type V2O5 Hollow Spheres, J. Mater. Chem. A. 2015, in press.

DOI: 10.1039/c5ta02295a

Google Scholar

[29] H. Yin, K. Yu, J. Hu, C. Song, B. Guo, Z. Wang and Z. Zhu, Novel photoluminescence properties and enhanced photocatalytic activities for V2O5-loaded ZnO nanorods, Dalton Trans. 44(2015)4671–4678.

DOI: 10.1039/c5dt00015g

Google Scholar

[30] E. Skliri, I. N. Lykakis and G. S. Armatas, Ordered mesoporous V2O5/WO3 composite catalysts for efficient oxidation of aryl alcohols, RSC Adv. 4(2014)46170–46178.

DOI: 10.1039/c4ra07850k

Google Scholar

[31] Y. Zhou, S. Ji, Y. Li, Y. Gao, H. Luo and P. Jin, Microemulsion-based synthesis of V1_xWxO2@SiO2 core–shell structures for smart window applications, J. Mater. Chem. C. 2(2014)3812–3819.

DOI: 10.1039/c3tc32282c

Google Scholar

[32] J. Xie, X. Zhang, H. Jiang, S. Wang, H. Liu and Y. Huang, V2O5 nanowires as a robust and efficient peroxidase mimic at high temperature in aqueous media, RSC Adv. 4(2014)26046–26049.

DOI: 10.1039/c4ra03118k

Google Scholar

[33] W. Zhao and Q. Zhong, The effect of oxygen vacancies and fluorine dopant over adsorption behaviours of V2O5/TiO2 for NO removal, RSC Adv. 4(2014)5653–5659.

DOI: 10.1039/c3ra45030a

Google Scholar

[34] S. Zhao, Y. Ma, Z. Qu, N. Yan, Z. Li, J. Xie and W. Chen, The performance of Ag doped V2O5–TiO2 catalyst on the catalytic oxidation of gaseous elemental mercury, Catal. Sci. Technol. 4(2014)4036–4044.

DOI: 10.1039/c4cy00410h

Google Scholar

[35] W. Avansi Jr, V. R. de Mendonça, O. F. Lopes and C. Ribeiro, Vanadium pentoxide 1-D nanostructures applied to dye removal from aqueous systems by coupling adsorption and visible-light photodegradation, RSC Adv. 5(2015)12000–12006.

DOI: 10.1039/c4ra12788a

Google Scholar

[36] K. K. Dey, D. Bhatnagar, A. K. Srivastava, M. Wan, S. Singh, R. R. Yadav, B. C. Yadav and M. Deepa, VO2 nanorods for efficient performance in thermal fluids and sensors, Nanoscale. 7(2015)6159–6172.

DOI: 10.1039/c4nr06032f

Google Scholar

[37] C. Wu, F. Feng and Y. Xie, Design of vanadium oxide structures with controllable electrical properties for energy applications, Chem. Soc. Rev. 42(2013)5157—5183.

DOI: 10.1039/c3cs35508j

Google Scholar

[38] U. Tritschler, F. Beck, H. Schlaad and H. C¨olfen, Electrochromic properties of self-organized multifunctional V2O5–polymer hybrid films, J. Mater. Chem. C. 3(2015)950–954.

DOI: 10.1039/c4tc02138j

Google Scholar

[39] F. K. Butt, C. Cao, F. Idrees, M. Tahir, R. Hussain and A. Z. Alshemary, Fabrication of V2O5 super long nanobelts: optical, in situ electrical and field emission properties, New J. Chem. in press.

DOI: 10.1039/c5nj00614g

Google Scholar

[40] G. Xu, X. Wang, X. Chen and L. Jiao, Facile synthesis and phase transition of V2O3 nanobelts, RSC Adv. 5(2015)17782–17785.

DOI: 10.1039/c4ra13707h

Google Scholar

[41] M. Lee, W. G. Hong, H. Y. Jeong, S. K. Balasingam, Z. Lee, S. Chang, B. H. Kim and Y. Jun, Graphene oxide assisted spontaneous growth of V2O5 nanowires at room temperature, Nanoscale. 6(2014)11066–11071.

DOI: 10.1039/c4nr01780c

Google Scholar

[42] E. Østreng, K. B. Gandrud, Y. Hu, O. Nilsen and H. Fjellv°ag, High power nano-structured V2O5 thin film cathodes by atomic layer deposition, J. Mater. Chem. A. 2(2014)15044–15051.

DOI: 10.1039/c4ta00694a

Google Scholar

[43] N. Steunou and J. Livage, Rational design of one-dimensional vanadiumIJV) oxide nanocrystals: an insight into the physicochemical parameters controlling the crystal structure, morphology and size of particles, Cryst. Eng. Comm. in press.

DOI: 10.1039/c5ce00554j

Google Scholar

[44] G. Qin, X. Wu and H. Zhang, Rational design of TiO2–V2O5–C nanostructure grafted by N-doped graphene with enhanced photocatalysis and lithium ion store performances, RSC Adv. 4(2014)52438–52450.

DOI: 10.1039/c4ra08931f

Google Scholar

[45] Z. Feng, M. E. McBriarty, A. U. Mane, J. Lu, P. C. Stair, J. W. Elam and M. J. Bedzyk, Redox-driven atomic-scale changes in mixed catalysts: VOX/WOX/a-TiO2 (110), RSC Adv. 4(2014)64608–64616.

DOI: 10.1039/c4ra14140g

Google Scholar

[46] B. Ahmad, G.R. Khan, and K. Asokan, Role of substrate effects on the morphological, structural, electrical and thermoelectrical properties of V2O5 thin films, RSC Adv. 2015, in press.

DOI: 10.1039/c5ra07542d

Google Scholar

[47] B. Helmich, M. Sierka, J. Do¨bler and J. Sauer, Structure and properties of bimetallic titanium and vanadium oxide clusters, Phys. Chem. Chem. Phys. 16(2014)8441-8447.

DOI: 10.1039/c4cp00752b

Google Scholar

[48] T. Hallam, A. Shakouri, E. Poliani, A. P. Rooney, I. Ivanov, A. Potie, H. K. Taylor, M. Bonn, D. Turchinovich, S. J. Haigh, J. Maultzsch, and G. S. Duesberg, Controlled Folding of Graphene: GraFold Printing, Nano Lett. 15(2015)857−863.

DOI: 10.1021/nl503460p

Google Scholar

[49] L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices, ACSNano. 9( 2015) 3428–3435.

DOI: 10.1021/acsnano.5b01762

Google Scholar

[50] Z. Ji, S. K. Doorn, and M. Sykora, Electrochromic Graphene Molecules, ACSNano. 9 (2015 ) 4043–4049.

DOI: 10.1021/acsnano.5b00093

Google Scholar

[51] M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S.W. Nam, Heterogeneous, Three-Dimensional Texturing of Graphene, Nano Lett. 15(2015)1829−1835.

DOI: 10.1021/nl504612y

Google Scholar

[52] J. Y. Kim and J. C. Grossman, High-Efficiency Thermoelectrics with Functionalized Graphene, Nano Lett. 15(2015)2830−2835.

DOI: 10.1021/nl504257q

Google Scholar

[53] Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li, Surface modification of ZnO nanosheets with Au/polyaniline and their properties, Materials Research Innovations, 18(2014) 30-36.

Google Scholar

[54] B. Zhang, X. He, M. Gao, X. Ma, G. Li, Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites, Materials Science Forum, Energy and Environmental Materials II. 814(2015)153-160.

DOI: 10.4028/www.scientific.net/msf.814.153

Google Scholar

[55] Y. Gong, H. Fei, X. Zou, W. Zhou, S. Yang, G. Ye, Z. Liu, Z. Peng, J. Lou, Robert Vajtai, Boris I. Yakobson, James M. Tour, and Pulickel M. Ajayan, Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction, Chem. Mater. 27(2015).

DOI: 10.1021/cm5037502

Google Scholar

[56] Z. John Qi, C. Daniels, S. Hong, Y. WooPark, V. Meunier, M. Drndi and A. T. Charlie Johnson, Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons, ACSNano. 9(2015 ) 3510–3520.

DOI: 10.1021/nn507452g

Google Scholar

[57] Y. Byun and A. Coskun, Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties, Chem. Mater. 27(2015)2576−2583.

DOI: 10.1021/acs.chemmater.5b00246

Google Scholar

[58] J. Zheng, G. Liu, M. Gao, X. He, X. Ma,G. Li,Controlled synthesis, characterization and applications of low-dimensional vanadium oxides with different morphologies, Proceedings of 2011 China Functional Materials Technology and Industry Form (CFMTIF2011), (2011).

Google Scholar

[59] Q. Cong, X. He, M. Gao, X. Ma , G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization, Materials Research Innovations, 18(2014) 740-746.

DOI: 10.1179/1432891714z.000000000775

Google Scholar