[1]
J. Wang, C. Cui, G. Gao, X. Zhou, J. Wu, H. Yang, Q. Li and G. Wu, A new method to prepare vanadium oxide nano-urchins as a cathode for lithium ion batteries, RSC Adv. 5(2015)47522–47528.
DOI: 10.1039/c5ra02508g
Google Scholar
[2]
X. Sun, C. Zhou, M. Xie, T. Hu, H. Sun, G. Xin, G. Wang, S. M. Georgec and J. Lian, Amorphous vanadium oxide coating on grapheme by atomic layer deposition for stable high energy lithium ion anodes, Chem. Commun. 50(2014) 10703-10706.
DOI: 10.1039/c4cc04580g
Google Scholar
[3]
M. J. Armstrong, D. M. Burke, T. Gabriel, C. O'Regan, C. O'Dwyer, N. Petkova and J. D. Holmes, Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries, J. Mater. Chem. A. 1(2013)12568–12578.
DOI: 10.1039/c3ta12652h
Google Scholar
[4]
X. Jia, L. Zhang, R. Zhang, Y. Lu and F. Wei, Carbon nanotube-penetrated mesoporous V2O5 microspheres as high-performance cathode materials for lithium-ion batteries, RSC Adv. 4(2014)21018–21022.
DOI: 10.1039/c4ra01316f
Google Scholar
[5]
W. Cheng, G. Zeng and M. Niederberger, Design of vanadium oxide core–shell nanoplatelets for lithium ion storage, J. Mater. Chem. A. 3(2015)2861–2868.
DOI: 10.1039/c4ta05495d
Google Scholar
[6]
Z. Li, Q. Zhu, S. Huang, S. Jiang, S. Lu, W. Chen and G. S. Zakharova, Interpenetrating network V2O5 nanosheets/carbon nanotubes nanocomposite for fast lithium storage, RSC Adv. 4(2014)46624–46630.
DOI: 10.1039/c4ra07937j
Google Scholar
[7]
X. Zhou, G. Wu, J. Wu, H. Yang, J. Wang, G. Gao, R. Cai and Q. Yan, Multiwalled carbon nanotubes–V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries, J. Mater. Chem. A. 1(2013).
DOI: 10.1039/c3ta13143b
Google Scholar
[8]
Y. Zheng, H. Ding, E. Uchaker, X. Tao, J. Chen, Q. Zhang and G. Cao, Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties, J. Mater. Chem. A. 3(2015)1979–(1985).
DOI: 10.1039/c4ta05500d
Google Scholar
[9]
J. Cheng, B. Wang, H. L. Xin, G. Yang, H. Cai, F. Nie and H. Huang, Self-assembled V2O5 nanosheets/reduced grapheme oxide hierarchical nanocomposite as a highperformance cathode material for lithium ion batteries, J. Mater. Chem. A. 1(2013).
DOI: 10.1039/c3ta12066j
Google Scholar
[10]
G. Li, Y. Qiu, Y. Hou, H. Li, L. Zhou, H. Deng and Y. Zhang, Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage, J. Mater. Chem. A. 3(2015)1103–1109.
DOI: 10.1039/c4ta04864d
Google Scholar
[11]
H. Pang, P. Cheng, H. Yang, J. Lu, C. Guo, G. Ning and C. Li, Template-free bottom-up synthesis of yolk–shell vanadium oxide as high performance cathode for lithium ion batteries, Chem. Commun. 49(2013)1536—1538.
DOI: 10.1039/c2cc38244j
Google Scholar
[12]
Q. An, P. Zhang, Q. Wei, L. He, F. Xiong, J. Sheng, Q. Wang and L. Mai, Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance, J. Mater. Chem. A. 2(2014).
DOI: 10.1039/c3ta14818a
Google Scholar
[13]
A. Pan, H. Wu, L. Zhang and X (David) Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties, Energy Environ. Sci. 6(2013)1476–1479.
DOI: 10.1039/c3ee40260f
Google Scholar
[14]
X. Yu, Z. Lu, G. Zhang, X. Lei, J. Liu, L. Wang and X. Sun, V2O5 nanostructure arrays: controllable synthesis and performance as cathodes for lithium ion batteries, RSC Adv. 3(2013)19937–19941.
DOI: 10.1039/c3ra42650e
Google Scholar
[15]
L. Shao, J. Jeon and J. L. Lutkenhaus, Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage, J. Mater. Chem. A. 2(2014)14421–14428.
DOI: 10.1039/c4ta02911a
Google Scholar
[16]
L. Cao, J. Zhu, Y. Li, P. Xiao, Y. Zhang, S. Zhang and S. Yang, Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage, J. Mater. Chem. A. 2(2014)13136–13142.
DOI: 10.1039/c4ta02229g
Google Scholar
[17]
M. Bai, T. Liu, F. Luan, Y. Li and X. Liu, Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors, J. Mater. Chem. A. 2(2014)10882–10888.
DOI: 10.1039/c3ta15391f
Google Scholar
[18]
T. Qian, N. Xu, J. Zhou, T. Yang, X. Liu, X. Shen, J. Liang and C. Yan, Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors, J. Mater. Chem. A. 3(2015)488–493.
DOI: 10.1039/c4ta05769d
Google Scholar
[19]
H. Li, K. Jiao, L. Wang, C. Wei, X. Li and B. Xie, Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors, J. Mater. Chem. A. 2(2014)18806–18815.
DOI: 10.1039/c4ta04062g
Google Scholar
[20]
B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, MnO2 grafted V2O5 nanostructures: formation mechanism, morphology and supercapacitive features, Cryst. Eng. Comm. 16(2014)10711–10720.
DOI: 10.1039/c4ce01476f
Google Scholar
[21]
H. Wang, H. Yi, X. Chen and X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors, J. Mater. Chem. A. 2(2014)1165–1173.
DOI: 10.1039/c3ta13932h
Google Scholar
[22]
Y. Wu, G. Gao and G. Wu, Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life, J. Mater. Chem. A. 3(2015)1828–1832.
DOI: 10.1039/c4ta05537c
Google Scholar
[23]
D. H. Nagaraju, Q. Wang, P. Beaujuge and H. N. Alshareef, Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors, J. Mater. Chem. A. 2(2014)17146–17152.
DOI: 10.1039/c4ta03731f
Google Scholar
[24]
B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, V2O5/functionalized MWCNT hybrid nanocomposite: the fabrication and its enhanced supercapacitive performance, RSC Adv. 4(2014)37437–37445.
DOI: 10.1039/c4ra05942e
Google Scholar
[25]
M. E. A. Warwickab and R. Binions, Advances in thermochromic vanadium dioxide films, J. Mater. Chem. A. 2(2014)3275–3292.
DOI: 10.1039/c3ta14124a
Google Scholar
[26]
Y. Lu, L. Liu, D. Mandler and P. S. Lee, High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices, J. Mater. Chem. C. 1(2013)7380–7386.
DOI: 10.1039/c3tc31508h
Google Scholar
[27]
Z. Tong, H. Yang, L. Na, H. Qu, X. Zhang, J. Zhao and Y. Li, Versatile displays based on a 3-dimensionally ordered macroporous vanadium oxide film for advanced electrochromic devices, J. Mater. Chem. C. 3(2015)3159—3166.
DOI: 10.1039/c5tc00029g
Google Scholar
[28]
B. Liu, X. Li, Q. Zhao, J. Liu, S. Liu, S. Wang, M. Tadé, Insight into the Mechanism of Photocatalytic Degradation of Gaseous o-dichlorobenzene over Flower-Type V2O5 Hollow Spheres, J. Mater. Chem. A. 2015, in press.
DOI: 10.1039/c5ta02295a
Google Scholar
[29]
H. Yin, K. Yu, J. Hu, C. Song, B. Guo, Z. Wang and Z. Zhu, Novel photoluminescence properties and enhanced photocatalytic activities for V2O5-loaded ZnO nanorods, Dalton Trans. 44(2015)4671–4678.
DOI: 10.1039/c5dt00015g
Google Scholar
[30]
E. Skliri, I. N. Lykakis and G. S. Armatas, Ordered mesoporous V2O5/WO3 composite catalysts for efficient oxidation of aryl alcohols, RSC Adv. 4(2014)46170–46178.
DOI: 10.1039/c4ra07850k
Google Scholar
[31]
Y. Zhou, S. Ji, Y. Li, Y. Gao, H. Luo and P. Jin, Microemulsion-based synthesis of V1_xWxO2@SiO2 core–shell structures for smart window applications, J. Mater. Chem. C. 2(2014)3812–3819.
DOI: 10.1039/c3tc32282c
Google Scholar
[32]
J. Xie, X. Zhang, H. Jiang, S. Wang, H. Liu and Y. Huang, V2O5 nanowires as a robust and efficient peroxidase mimic at high temperature in aqueous media, RSC Adv. 4(2014)26046–26049.
DOI: 10.1039/c4ra03118k
Google Scholar
[33]
W. Zhao and Q. Zhong, The effect of oxygen vacancies and fluorine dopant over adsorption behaviours of V2O5/TiO2 for NO removal, RSC Adv. 4(2014)5653–5659.
DOI: 10.1039/c3ra45030a
Google Scholar
[34]
S. Zhao, Y. Ma, Z. Qu, N. Yan, Z. Li, J. Xie and W. Chen, The performance of Ag doped V2O5–TiO2 catalyst on the catalytic oxidation of gaseous elemental mercury, Catal. Sci. Technol. 4(2014)4036–4044.
DOI: 10.1039/c4cy00410h
Google Scholar
[35]
W. Avansi Jr, V. R. de Mendonça, O. F. Lopes and C. Ribeiro, Vanadium pentoxide 1-D nanostructures applied to dye removal from aqueous systems by coupling adsorption and visible-light photodegradation, RSC Adv. 5(2015)12000–12006.
DOI: 10.1039/c4ra12788a
Google Scholar
[36]
K. K. Dey, D. Bhatnagar, A. K. Srivastava, M. Wan, S. Singh, R. R. Yadav, B. C. Yadav and M. Deepa, VO2 nanorods for efficient performance in thermal fluids and sensors, Nanoscale. 7(2015)6159–6172.
DOI: 10.1039/c4nr06032f
Google Scholar
[37]
C. Wu, F. Feng and Y. Xie, Design of vanadium oxide structures with controllable electrical properties for energy applications, Chem. Soc. Rev. 42(2013)5157—5183.
DOI: 10.1039/c3cs35508j
Google Scholar
[38]
U. Tritschler, F. Beck, H. Schlaad and H. C¨olfen, Electrochromic properties of self-organized multifunctional V2O5–polymer hybrid films, J. Mater. Chem. C. 3(2015)950–954.
DOI: 10.1039/c4tc02138j
Google Scholar
[39]
F. K. Butt, C. Cao, F. Idrees, M. Tahir, R. Hussain and A. Z. Alshemary, Fabrication of V2O5 super long nanobelts: optical, in situ electrical and field emission properties, New J. Chem. in press.
DOI: 10.1039/c5nj00614g
Google Scholar
[40]
G. Xu, X. Wang, X. Chen and L. Jiao, Facile synthesis and phase transition of V2O3 nanobelts, RSC Adv. 5(2015)17782–17785.
DOI: 10.1039/c4ra13707h
Google Scholar
[41]
M. Lee, W. G. Hong, H. Y. Jeong, S. K. Balasingam, Z. Lee, S. Chang, B. H. Kim and Y. Jun, Graphene oxide assisted spontaneous growth of V2O5 nanowires at room temperature, Nanoscale. 6(2014)11066–11071.
DOI: 10.1039/c4nr01780c
Google Scholar
[42]
E. Østreng, K. B. Gandrud, Y. Hu, O. Nilsen and H. Fjellv°ag, High power nano-structured V2O5 thin film cathodes by atomic layer deposition, J. Mater. Chem. A. 2(2014)15044–15051.
DOI: 10.1039/c4ta00694a
Google Scholar
[43]
N. Steunou and J. Livage, Rational design of one-dimensional vanadiumIJV) oxide nanocrystals: an insight into the physicochemical parameters controlling the crystal structure, morphology and size of particles, Cryst. Eng. Comm. in press.
DOI: 10.1039/c5ce00554j
Google Scholar
[44]
G. Qin, X. Wu and H. Zhang, Rational design of TiO2–V2O5–C nanostructure grafted by N-doped graphene with enhanced photocatalysis and lithium ion store performances, RSC Adv. 4(2014)52438–52450.
DOI: 10.1039/c4ra08931f
Google Scholar
[45]
Z. Feng, M. E. McBriarty, A. U. Mane, J. Lu, P. C. Stair, J. W. Elam and M. J. Bedzyk, Redox-driven atomic-scale changes in mixed catalysts: VOX/WOX/a-TiO2 (110), RSC Adv. 4(2014)64608–64616.
DOI: 10.1039/c4ra14140g
Google Scholar
[46]
B. Ahmad, G.R. Khan, and K. Asokan, Role of substrate effects on the morphological, structural, electrical and thermoelectrical properties of V2O5 thin films, RSC Adv. 2015, in press.
DOI: 10.1039/c5ra07542d
Google Scholar
[47]
B. Helmich, M. Sierka, J. Do¨bler and J. Sauer, Structure and properties of bimetallic titanium and vanadium oxide clusters, Phys. Chem. Chem. Phys. 16(2014)8441-8447.
DOI: 10.1039/c4cp00752b
Google Scholar
[48]
T. Hallam, A. Shakouri, E. Poliani, A. P. Rooney, I. Ivanov, A. Potie, H. K. Taylor, M. Bonn, D. Turchinovich, S. J. Haigh, J. Maultzsch, and G. S. Duesberg, Controlled Folding of Graphene: GraFold Printing, Nano Lett. 15(2015)857−863.
DOI: 10.1021/nl503460p
Google Scholar
[49]
L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices, ACSNano. 9( 2015) 3428–3435.
DOI: 10.1021/acsnano.5b01762
Google Scholar
[50]
Z. Ji, S. K. Doorn, and M. Sykora, Electrochromic Graphene Molecules, ACSNano. 9 (2015 ) 4043–4049.
DOI: 10.1021/acsnano.5b00093
Google Scholar
[51]
M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S.W. Nam, Heterogeneous, Three-Dimensional Texturing of Graphene, Nano Lett. 15(2015)1829−1835.
DOI: 10.1021/nl504612y
Google Scholar
[52]
J. Y. Kim and J. C. Grossman, High-Efficiency Thermoelectrics with Functionalized Graphene, Nano Lett. 15(2015)2830−2835.
DOI: 10.1021/nl504257q
Google Scholar
[53]
Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li, Surface modification of ZnO nanosheets with Au/polyaniline and their properties, Materials Research Innovations, 18(2014) 30-36.
Google Scholar
[54]
B. Zhang, X. He, M. Gao, X. Ma, G. Li, Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites, Materials Science Forum, Energy and Environmental Materials II. 814(2015)153-160.
DOI: 10.4028/www.scientific.net/msf.814.153
Google Scholar
[55]
Y. Gong, H. Fei, X. Zou, W. Zhou, S. Yang, G. Ye, Z. Liu, Z. Peng, J. Lou, Robert Vajtai, Boris I. Yakobson, James M. Tour, and Pulickel M. Ajayan, Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction, Chem. Mater. 27(2015).
DOI: 10.1021/cm5037502
Google Scholar
[56]
Z. John Qi, C. Daniels, S. Hong, Y. WooPark, V. Meunier, M. Drndi and A. T. Charlie Johnson, Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons, ACSNano. 9(2015 ) 3510–3520.
DOI: 10.1021/nn507452g
Google Scholar
[57]
Y. Byun and A. Coskun, Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties, Chem. Mater. 27(2015)2576−2583.
DOI: 10.1021/acs.chemmater.5b00246
Google Scholar
[58]
J. Zheng, G. Liu, M. Gao, X. He, X. Ma,G. Li,Controlled synthesis, characterization and applications of low-dimensional vanadium oxides with different morphologies, Proceedings of 2011 China Functional Materials Technology and Industry Form (CFMTIF2011), (2011).
Google Scholar
[59]
Q. Cong, X. He, M. Gao, X. Ma , G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization, Materials Research Innovations, 18(2014) 740-746.
DOI: 10.1179/1432891714z.000000000775
Google Scholar