[1]
L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321 (2008) 1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[2]
M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater. 19 (2007) 1043.
DOI: 10.1002/adma.200600527
Google Scholar
[3]
Y. Zheng, Q. Zhang, X. L. Su, H. Y. Xie, S. C. Shu, T. L. Chen, G. J. Tan, Y. G. Yan, X. F. Tang, C. Uher, G. J. Snyder, Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials, Adv. Energy Mater. 5 (2015).
DOI: 10.1002/aenm.201401391
Google Scholar
[4]
J. S. Zhang, X. Feng, Y. Xu, M. H. Guo, Z. C. Zhang, Y. B. Ou, Y. Feng, K. Li, H. J. Zhang, L. L. Wang, X. Chen, Z. X. Gan, S. C. Zhang, K. He, X. C. Ma, Q. K. Xue, Y. Y. Wang, Disentangling the magnetoelectric and thermoelectric transport in topological insulator thin films, Phys. Rev. B 91 (2015).
DOI: 10.1103/physrevb.91.075431
Google Scholar
[5]
G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.
Google Scholar
[6]
J. Tobola, J. Pierre, Electronic phase diagram of the XTZ (X=Fe, Co, Ni; T=Ti, V, Zr, Nb, Mn; Z=Sn, Sb) semi-Heusler compounds, J. Alloys Compd. 296 (2000) 243-252.
DOI: 10.1016/s0925-8388(99)00549-6
Google Scholar
[7]
J. Tobola, J. Pierre, S. Kaprzyk, R. V. Skolozdra, M. A. Kouacou, Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration, J. Phys.: Condens. Matter 10 (1998) 1013-1032.
DOI: 10.1088/0953-8984/10/5/011
Google Scholar
[8]
G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. C. Lan, B. Kozinsky, Z. F. Ren, NbFeSb-based p-type half-Heuslers for power generation applications, Energy Environ. Sci. 7 (2014) 4070-4076.
DOI: 10.1039/c4ee02180k
Google Scholar
[9]
C. G. Fu, T. J. Zhu, Y. T. Liu, H. H. Xie, X. B. Zhao, Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1, Energy Environ. Sci. 8 (2015) 216-220.
DOI: 10.1039/c4ee03042g
Google Scholar
[10]
C. G. Fu, H. H. Xie, T. J. Zhu, J. Xie, X. B. Zhao, Enhanced phonon scattering by mass and strain field fluctuations in Nb substituted FeVSb half-Heusler thermoelectric materials, J. Appl. Phys. 112 (2012) 124915.
DOI: 10.1063/1.4772605
Google Scholar
[11]
C. G. Fu, Y. T. Liu, H. H. Xie, X. H. Liu, X. B. Zhao, G. J. Snyder, J. Xie, T. J. Zhu, Electron and phonon transport in Co-doped FeV0. 6Nb0. 4Sb half-Heusler thermoelectric materials, J. Appl. Phys. 114 (2013) 134905.
DOI: 10.1063/1.4823859
Google Scholar
[12]
C. G. Fu, T. J. Zhu, Y. Z. Pei, H. H. Xie, H. Wang, G. J. Snyder, Y. Liu, Y. T. Liu, X. B. Zhao, High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type Half-Heusler Compounds, Adv. Energy Mater. 4 (2014) 1400600.
DOI: 10.1002/aenm.201400600
Google Scholar
[13]
J. Yang, H. M. Li, T. Wu, W. Q. Zhang, L. D. Chen, J. H. Yang, Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties, Adv. Funct. Mater. 18 (2008) 2880–2888.
DOI: 10.1002/adfm.200701369
Google Scholar
[14]
D. P. Young, P. Khalifah, R. J. Cava, A. P. Ramirez, Thermoelectric properties of pure and doped FeMSb ( M=V, Nb ), J. Appl. Phys. 87 (2000) 317-321.
DOI: 10.1063/1.371863
Google Scholar
[15]
G. K. H. Madsen, D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006) 67.
DOI: 10.1016/j.cpc.2006.03.007
Google Scholar
[16]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[17]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[18]
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[19]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[20]
P. Larson, S. Mahanti, J. Salvador, M. Kanatzidis, Electronic structure of the ternary Zintl-phase compounds Zr3Ni3Sb4, Hf3Ni3Sb4, and Zr3Pt3Sb4 and their similarity to half-Heusler compounds such as ZrNiSn, Phys. Rev. B 74 (2006) 035111.
Google Scholar
[21]
M. S. Lee, F. P. Poudeu, S. D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds, Phys. Rev. B 83 (2011) 085204.
DOI: 10.1103/physrevb.83.159907
Google Scholar
[22]
G. Yang, J. M. Yang, Y. L. Yan, Y. X. Wang, The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M = K, Rb), Phys. Chem. Chem. Phys. 16 (2014) 5661-5666.
DOI: 10.1039/c3cp54545h
Google Scholar
[23]
L. B. Guo, Y. X. Wang, Y. L. Yan, G. Yang, J. M. Yang,. Z. Z. Feng, Electronic structure and thermoelectric properties of orthorhombic SrLiAs, J. Appl. Phys. 116 (2014) 033705.
DOI: 10.1063/1.4890516
Google Scholar
[24]
J. J. Pulikkotil, D. J. Singh, S. Auluck, M. Saravanan, D. K. Misra, A. Dhar, R. C. Budhani, Doping and temperature dependence of thermoelectric properties in Mg2(Si, Sn), Phys. Rev. B 86 (2012) 155204.
DOI: 10.1103/physrevb.86.155204
Google Scholar