[1]
N. Fiedler, R. Laumbach, K. Kelly-McNeil, P. Lioy, Z. -H. Fan, J. Zhang, J. Ottenweller, P. Ohman-Strickland, H. Kipen, Health Effects of a Mixture of Indoor Air Volatile Organics, Their Ozone Oxidation Products, and Stress, Environ. Health Perspect. 113 (2005).
DOI: 10.1289/ehp.8132
Google Scholar
[2]
K.J. Lee, N. Shiratori, G.H. Lee, J. Miyawaki, I. Mochida, S. -H. Yoon, J. Jang, Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, Carbon 48 (2010) 4248-4255.
DOI: 10.1016/j.carbon.2010.07.034
Google Scholar
[3]
D. Belpomme, P. Irigaray, L. Hardell, R. Clappd, L. Montagniere, S. Epsteinf, A.J. Sasco, The multitude and diversity of environmental carcinogens. Environ. Res. 105 (2007) 414-429.
DOI: 10.1016/j.envres.2007.07.002
Google Scholar
[4]
J.H. Arts, M.A. Rennende, C. Heer, Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity, Regul. Toxic. Pharma. 44 (2006) 144-160.
DOI: 10.1016/j.yrtph.2005.11.006
Google Scholar
[5]
J. Li, P.K. Dasgupta, W. Luke, Measurement of gaseous and aqueous trace formaldehyde: Revisiting the pentanedione reaction and field applications, Analytica Chimica Acta. 531 (2005) 51-68.
DOI: 10.1016/j.aca.2004.09.087
Google Scholar
[6]
Z. Wang, Z. Bai, H. Yu, J. Zhang, T. Zhu, Regulatory standards related to building energy conservation and indoor-air-quality during rapid urbanization in China, Energy Buildings 36 (2004) 1299-1308.
DOI: 10.1016/j.enbuild.2003.09.013
Google Scholar
[7]
C. Yu, D. Crump, A review of the emission of VOCs from polymeric materials used in buildings, Build. Environ. 33 (1998) 357-374.
DOI: 10.1016/s0360-1323(97)00055-3
Google Scholar
[8]
N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?, Sens. Actuators B 121 (2007) 18-35.
DOI: 10.1016/j.snb.2006.09.047
Google Scholar
[9]
W. Yang, P. Wan, X.D. Zhou, J.M. Hu, Y.F. Guan, L. Feng, Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde, Sens. Actuators B 201 (2014) 228–233.
DOI: 10.1016/j.snb.2014.05.003
Google Scholar
[10]
H.J. Park, N. -J. Choi, H. Kang, M.Y. Jung, J.W. Park, K.H. Park, D. -S. Lee, A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process, Sens. Actuators B 203 (2014) 282–288.
DOI: 10.1016/j.snb.2014.06.118
Google Scholar
[11]
X. Chi, C.B. Liu, L. Liu, S.H. Li, H.Y. Li, X.D. Zhang, X.Q. Bo, H. Shan, Enhanced formaldehyde-sensing properties of mixed Fe2O3-In2O3 nanotubes, Mater. Sci. Semiconductor Processing 18 (2014) 160-164.
DOI: 10.1016/j.mssp.2013.11.016
Google Scholar
[12]
K. Xu, D.W. Zeng, S.Q. Tian, S.P. Zhang, C.S. Xie, Hierarchical porous SnO2 micro-rods topologically transferred from tin oxalate for fast response sensors to trace formaldehyde, Sens. Actuators B 190 (2014) 585-592.
DOI: 10.1016/j.snb.2013.09.021
Google Scholar
[13]
S.J. Pearton, D.P. Norton, K. Ip, Recent progress in processing and properties of ZnO, Prog. Mater. Sci. 50 (2005) 293–340.
DOI: 10.1016/j.pmatsci.2020.100669
Google Scholar
[14]
X.H. Ding, D.W. Zeng, S.P. Zhang, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature, Sens. Actuators B 155 (2011) 86-92.
DOI: 10.1016/j.snb.2010.11.030
Google Scholar
[15]
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases, Sens. Actuators B 160 (2011) 580-591.
DOI: 10.1016/j.snb.2011.08.032
Google Scholar
[16]
M.M. Natile, A. Ponzoni, I. Concina, A. Glisenti, Chemical Tuning versus Microstructure Features in Solid-State Gas Sensors: LaFe1-xGaxO3, a Case Study, Chem. Mater. 26 (2014) 1505-1513.
DOI: 10.1021/cm4018858
Google Scholar
[17]
Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, A High Sensitivity Gas Sensor for Formaldehyde Based on Silver Doped Lanthanum Ferrite, Sens. Actuators, B 190 (2014) 171-176.
DOI: 10.1016/j.snb.2013.08.046
Google Scholar
[18]
Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, Q.J. Liu, Improvement of Response to Formaldehyde at Ag-LaFeO3 Based Gas Sensors Through Incorporation of SWCNTs, Sens. Actuators, B 195 (2014) 509-514.
DOI: 10.1016/j.snb.2014.01.031
Google Scholar
[19]
G. Vlatakis, L.I. Andersson, R. Muller, K. Mosbach, Drug assay using antibody mimics made by molecular imprinting, Nature 361 (1993) 645–647.
DOI: 10.1038/361645a0
Google Scholar
[20]
G. Wulff, Molecular imprinting in cross-linked materials with aid of molecular templates–A way towards artificial antibodies, Ang. Chemie. International Edition 34 (1995) 1812–1832.
DOI: 10.1002/anie.199518121
Google Scholar
[21]
D. Kriz, O. Ramstrom, K. Mosbach, Molecular imprinting. New possibilities for sensor technology, Analys. Chem., News Features (1997) 345A–349A.
DOI: 10.1021/ac971657e
Google Scholar
[22]
O. Ramstrom, R.J. Ansell, Molecular imprinting technology: challenges and prospects for the future, Chirality 10 (1998) 195–209.
DOI: 10.1002/(sici)1520-636x(1998)10:3<195::aid-chir1>3.0.co;2-9
Google Scholar
[23]
K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100 (2000) 2495–2504.
DOI: 10.1021/cr990099w
Google Scholar
[24]
M.J. Whitcombe, E.N. Vulfson, Imprinted polymers, Adv. Mater. 13 (2001) 467–478.
DOI: 10.1002/1521-4095(200104)13:7<467::aid-adma467>3.0.co;2-t
Google Scholar
[25]
Q. Zhu, Y.M. Zhang, J. Zhang, Z.Q. Zhu, Q.J. Liu, A new and high response gas sensor for methanol using molecularly imprinted technique, Sens. Actuators B 207 (2015) 398-403.
DOI: 10.1016/j.snb.2014.10.027
Google Scholar
[26]
Y.M. Zhang, Q.J. Liu, J. Zhang, Q. Zhu, Z.Q. Zhu, A highly sensitive and selective formaldehyde gas sensor using a molecular imprinting technique based on Ag–LaFeO3, J. Mater. Chem. C 2 (2014) 10067-10072.
DOI: 10.1039/c4tc01972e
Google Scholar
[27]
B.J. Gao, J.H. Lu, Z.P. Chen, J.F. Guo, Preparation and Recognition Performance of Cholic Acid-Imprinted Material Prepared with Novel Surface-Imprinting Technique, Polymer 50 (2009) 3275-3284.
DOI: 10.1016/j.polymer.2009.05.008
Google Scholar
[28]
M. Karlsson, A. Matic, P. Berastegui, L. Börjesson, Vibrational Properties of Proton Conducting Double Perovskites, Solid State Ionics 176 (2005) 2971-2974.
DOI: 10.1016/j.ssi.2005.09.033
Google Scholar
[29]
X.J. Cheng, K.L. Liang, G. Liu, N. Song, Synthesis and Crystal Structure of Carboxyl Oxygen-Bridged La (III) Four-nuclear Complex [C48H60La4O35], Chem. Bull. 70 (2007) 861–864.
Google Scholar
[30]
Y. Kabbadj, T. Huet, D. Uy, T. Oka, Infrared Spectroscopy of the Amidogen Ion, NH+2, J. Mol. Spectrosc. 175 (1996) 277-288.
DOI: 10.1006/jmsp.1996.0033
Google Scholar
[31]
J. Yang, Y.Z. Xu, S.F. Weng, F. Ye, H.C. Gao, J.G. Wu, Synthesis and spectroscopic characterization of complexes of trivalent lanthanide ions Eu (III) and Tb (III). Spectrosc, Spectral Anal. 22 (2002) 741-744.
Google Scholar
[32]
L.Q. Mai, L. Xui, Q. Gaoi, C.H. Hani, B. Hui, Y.Q. Pii, Single β-AgVO3 nanowire H2S sensor. Nano Lett. 10 (2010) 2604-2608.
Google Scholar
[33]
A. Bejaoui, J. Guerin, K. Aguir, Modeling of a p-type resistive gas sensor in the presence of a reducing gas, Sens. Actuators B 181 (2013) 340-347.
DOI: 10.1016/j.snb.2013.01.018
Google Scholar
[34]
S. Maric, J. Lörgen, U. Herrmann, U. Schramm, J. Bargon, A new method to reduce the desorption time of a QCM sensor, using a halogen spot for heating, Sens. Actuators, B 101 (2004) 265-267.
DOI: 10.1016/j.snb.2004.02.026
Google Scholar
[35]
J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett. 94 (2009).
DOI: 10.1063/1.3133358
Google Scholar