A Novel Formaldehyde Gas Sensor Based on Ag-LaFeO3 Using Molecular Imprinting Technique

Article Preview

Abstract:

A novel gas sensor for the determination of formaldehyde was developed based on molecular imprinting technique (MIT). MIT was for the first time used to recognize small organic molecule by our group. The molecular imprinting nanoparticles (MINs) with a small dimension which possess extremely high surface-to-volume ratio were synthesized using imprinting polymerization with formaldehyde as template and Ag-LaFeO3 as substrate material. The structure of the MINs is orthogonal perovskite. And then the MINs were printed onto an alumina tube. Subsequently, a high selectivity molecular imprinting gas sensor for detection of formaldehyde was achieved. At 86°C, the response to 0.5 ppm formaldehyde based on the sensor is 16, and the response is lower than 2 for the other test gases. The response time and recovery time are 55 s and 40 s, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-293

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Fiedler, R. Laumbach, K. Kelly-McNeil, P. Lioy, Z. -H. Fan, J. Zhang, J. Ottenweller, P. Ohman-Strickland, H. Kipen, Health Effects of a Mixture of Indoor Air Volatile Organics, Their Ozone Oxidation Products, and Stress, Environ. Health Perspect. 113 (2005).

DOI: 10.1289/ehp.8132

Google Scholar

[2] K.J. Lee, N. Shiratori, G.H. Lee, J. Miyawaki, I. Mochida, S. -H. Yoon, J. Jang, Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, Carbon 48 (2010) 4248-4255.

DOI: 10.1016/j.carbon.2010.07.034

Google Scholar

[3] D. Belpomme, P. Irigaray, L. Hardell, R. Clappd, L. Montagniere, S. Epsteinf, A.J. Sasco, The multitude and diversity of environmental carcinogens. Environ. Res. 105 (2007) 414-429.

DOI: 10.1016/j.envres.2007.07.002

Google Scholar

[4] J.H. Arts, M.A. Rennende, C. Heer, Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity, Regul. Toxic. Pharma. 44 (2006) 144-160.

DOI: 10.1016/j.yrtph.2005.11.006

Google Scholar

[5] J. Li, P.K. Dasgupta, W. Luke, Measurement of gaseous and aqueous trace formaldehyde: Revisiting the pentanedione reaction and field applications, Analytica Chimica Acta. 531 (2005) 51-68.

DOI: 10.1016/j.aca.2004.09.087

Google Scholar

[6] Z. Wang, Z. Bai, H. Yu, J. Zhang, T. Zhu, Regulatory standards related to building energy conservation and indoor-air-quality during rapid urbanization in China, Energy Buildings 36 (2004) 1299-1308.

DOI: 10.1016/j.enbuild.2003.09.013

Google Scholar

[7] C. Yu, D. Crump, A review of the emission of VOCs from polymeric materials used in buildings, Build. Environ. 33 (1998) 357-374.

DOI: 10.1016/s0360-1323(97)00055-3

Google Scholar

[8] N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?, Sens. Actuators B 121 (2007) 18-35.

DOI: 10.1016/j.snb.2006.09.047

Google Scholar

[9] W. Yang, P. Wan, X.D. Zhou, J.M. Hu, Y.F. Guan, L. Feng, Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde, Sens. Actuators B 201 (2014) 228–233.

DOI: 10.1016/j.snb.2014.05.003

Google Scholar

[10] H.J. Park, N. -J. Choi, H. Kang, M.Y. Jung, J.W. Park, K.H. Park, D. -S. Lee, A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process, Sens. Actuators B 203 (2014) 282–288.

DOI: 10.1016/j.snb.2014.06.118

Google Scholar

[11] X. Chi, C.B. Liu, L. Liu, S.H. Li, H.Y. Li, X.D. Zhang, X.Q. Bo, H. Shan, Enhanced formaldehyde-sensing properties of mixed Fe2O3-In2O3 nanotubes, Mater. Sci. Semiconductor Processing 18 (2014) 160-164.

DOI: 10.1016/j.mssp.2013.11.016

Google Scholar

[12] K. Xu, D.W. Zeng, S.Q. Tian, S.P. Zhang, C.S. Xie, Hierarchical porous SnO2 micro-rods topologically transferred from tin oxalate for fast response sensors to trace formaldehyde, Sens. Actuators B 190 (2014) 585-592.

DOI: 10.1016/j.snb.2013.09.021

Google Scholar

[13] S.J. Pearton, D.P. Norton, K. Ip, Recent progress in processing and properties of ZnO, Prog. Mater. Sci. 50 (2005) 293–340.

DOI: 10.1016/j.pmatsci.2020.100669

Google Scholar

[14] X.H. Ding, D.W. Zeng, S.P. Zhang, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature, Sens. Actuators B 155 (2011) 86-92.

DOI: 10.1016/j.snb.2010.11.030

Google Scholar

[15] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases, Sens. Actuators B 160 (2011) 580-591.

DOI: 10.1016/j.snb.2011.08.032

Google Scholar

[16] M.M. Natile, A. Ponzoni, I. Concina, A. Glisenti, Chemical Tuning versus Microstructure Features in Solid-State Gas Sensors: LaFe1-xGaxO3, a Case Study, Chem. Mater. 26 (2014) 1505-1513.

DOI: 10.1021/cm4018858

Google Scholar

[17] Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, A High Sensitivity Gas Sensor for Formaldehyde Based on Silver Doped Lanthanum Ferrite, Sens. Actuators, B 190 (2014) 171-176.

DOI: 10.1016/j.snb.2013.08.046

Google Scholar

[18] Y.M. Zhang, J. Zhang, J.L. Chen, Z.Q. Zhu, Q.J. Liu, Improvement of Response to Formaldehyde at Ag-LaFeO3 Based Gas Sensors Through Incorporation of SWCNTs, Sens. Actuators, B 195 (2014) 509-514.

DOI: 10.1016/j.snb.2014.01.031

Google Scholar

[19] G. Vlatakis, L.I. Andersson, R. Muller, K. Mosbach, Drug assay using antibody mimics made by molecular imprinting, Nature 361 (1993) 645–647.

DOI: 10.1038/361645a0

Google Scholar

[20] G. Wulff, Molecular imprinting in cross-linked materials with aid of molecular templates–A way towards artificial antibodies, Ang. Chemie. International Edition 34 (1995) 1812–1832.

DOI: 10.1002/anie.199518121

Google Scholar

[21] D. Kriz, O. Ramstrom, K. Mosbach, Molecular imprinting. New possibilities for sensor technology, Analys. Chem., News Features (1997) 345A–349A.

DOI: 10.1021/ac971657e

Google Scholar

[22] O. Ramstrom, R.J. Ansell, Molecular imprinting technology: challenges and prospects for the future, Chirality 10 (1998) 195–209.

DOI: 10.1002/(sici)1520-636x(1998)10:3<195::aid-chir1>3.0.co;2-9

Google Scholar

[23] K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100 (2000) 2495–2504.

DOI: 10.1021/cr990099w

Google Scholar

[24] M.J. Whitcombe, E.N. Vulfson, Imprinted polymers, Adv. Mater. 13 (2001) 467–478.

DOI: 10.1002/1521-4095(200104)13:7<467::aid-adma467>3.0.co;2-t

Google Scholar

[25] Q. Zhu, Y.M. Zhang, J. Zhang, Z.Q. Zhu, Q.J. Liu, A new and high response gas sensor for methanol using molecularly imprinted technique, Sens. Actuators B 207 (2015) 398-403.

DOI: 10.1016/j.snb.2014.10.027

Google Scholar

[26] Y.M. Zhang, Q.J. Liu, J. Zhang, Q. Zhu, Z.Q. Zhu, A highly sensitive and selective formaldehyde gas sensor using a molecular imprinting technique based on Ag–LaFeO3, J. Mater. Chem. C 2 (2014) 10067-10072.

DOI: 10.1039/c4tc01972e

Google Scholar

[27] B.J. Gao, J.H. Lu, Z.P. Chen, J.F. Guo, Preparation and Recognition Performance of Cholic Acid-Imprinted Material Prepared with Novel Surface-Imprinting Technique, Polymer 50 (2009) 3275-3284.

DOI: 10.1016/j.polymer.2009.05.008

Google Scholar

[28] M. Karlsson, A. Matic, P. Berastegui, L. Börjesson, Vibrational Properties of Proton Conducting Double Perovskites, Solid State Ionics 176 (2005) 2971-2974.

DOI: 10.1016/j.ssi.2005.09.033

Google Scholar

[29] X.J. Cheng, K.L. Liang, G. Liu, N. Song, Synthesis and Crystal Structure of Carboxyl Oxygen-Bridged La (III) Four-nuclear Complex [C48H60La4O35], Chem. Bull. 70 (2007) 861–864.

Google Scholar

[30] Y. Kabbadj, T. Huet, D. Uy, T. Oka, Infrared Spectroscopy of the Amidogen Ion, NH+2, J. Mol. Spectrosc. 175 (1996) 277-288.

DOI: 10.1006/jmsp.1996.0033

Google Scholar

[31] J. Yang, Y.Z. Xu, S.F. Weng, F. Ye, H.C. Gao, J.G. Wu, Synthesis and spectroscopic characterization of complexes of trivalent lanthanide ions Eu (III) and Tb (III). Spectrosc, Spectral Anal. 22 (2002) 741-744.

Google Scholar

[32] L.Q. Mai, L. Xui, Q. Gaoi, C.H. Hani, B. Hui, Y.Q. Pii, Single β-AgVO3 nanowire H2S sensor. Nano Lett. 10 (2010) 2604-2608.

Google Scholar

[33] A. Bejaoui, J. Guerin, K. Aguir, Modeling of a p-type resistive gas sensor in the presence of a reducing gas, Sens. Actuators B 181 (2013) 340-347.

DOI: 10.1016/j.snb.2013.01.018

Google Scholar

[34] S. Maric, J. Lörgen, U. Herrmann, U. Schramm, J. Bargon, A new method to reduce the desorption time of a QCM sensor, using a halogen spot for heating, Sens. Actuators, B 101 (2004) 265-267.

DOI: 10.1016/j.snb.2004.02.026

Google Scholar

[35] J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett. 94 (2009).

DOI: 10.1063/1.3133358

Google Scholar