[1]
Z. Feng, R. Jia, B. Dou, H. Li, Z. Jin, X. Liu, F. Li, W. Zhang, and C. Wu, Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application, Applied Physics Letters. 106 (2015)053118.
DOI: 10.1063/1.4907645
Google Scholar
[2]
Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation, Applied Catalysis B: Environmental. 138-139(2013)26– 32.
DOI: 10.1016/j.apcatb.2013.02.011
Google Scholar
[3]
Y. Hong, J. Zhang, F. Huang, J. Zhang, X. Wang, Z. Wu, Z. Lin and J. Yu, Enhanced visible light photocatalytic hydrogen production activity of CuS/ZnS nanoflower spheres, J. Mater. Chem. A. 3(2015)13913–13919.
DOI: 10.1039/c5ta02500a
Google Scholar
[4]
W. Zhang, Y. Sun, Z. Xiao, W. Li, B. Li, X. Huang, X. Liu and J. Hu, Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties, J. Mater. Chem. A. 3(2015)7304–7313.
DOI: 10.1039/c5ta00560d
Google Scholar
[5]
C. Mondal, A. Singh, R. Sahoo, A. K. Sasmal, Y. Negishi and T. Pal, Preformed ZnS nanoflower prompted evolution of CuS/ZnS p–n heterojunctions for exceptional visible-light driven photocatalytic activity, New J. Chem, in press.
DOI: 10.1039/c5nj00128e
Google Scholar
[6]
J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan and Muthupandian Ashokkumar, Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity, RSC Adv. 5(2015)52718–52725.
DOI: 10.1039/c5ra06512g
Google Scholar
[7]
M. Tanveer, C. Cao, I. Aslam, Z. Ali, F. Idrees, W. S. Khan, M. Tahir, S. Khalid, G. Nabi and A. Mahmood, Synthesis of CuS flowers exhibiting versatile photo-catalyst response, New J. Chem. 39(2015)1459—1468.
DOI: 10.1039/c4nj01834f
Google Scholar
[8]
P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S D Na2SO3 solution, international journal of hydrogen energy. 38(2013)8625 -8630.
DOI: 10.1016/j.ijhydene.2013.04.131
Google Scholar
[9]
Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao and Y. Xie, A controlled solvothermal synthesis of CuS hierarchical structures and their natural-lightinduced photocatalytic properties, New J. Chem, in press.
DOI: 10.1039/c4nj02298j
Google Scholar
[10]
M. Saranya, R. Ramachandran, P. Kollu, S. K. Jeong and A. N. Grace, A template-free facile approach for the synthesis of CuS–rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents. RSC Adv. 5(2015).
DOI: 10.1039/c4ra09029b
Google Scholar
[11]
C. Zhang, M. Shaon, F. Ning, S. Xu, Z. Li, M. Wein, David G. Evans, X. Duan, Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting, Nano Energy. 12(2015)231–239.
DOI: 10.1016/j.nanoen.2014.12.037
Google Scholar
[12]
C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, Surface Passivation Effect on the Photoluminescence of ZnO Nanorods, ACS Appl. Mater. Interfaces. 5(2013)6354−6359.
DOI: 10.1021/am401418b
Google Scholar
[13]
M. Din, D. Zhao, B. Yao, B. Zhao, X. Xu, High brightness light emitting diode based on single ZnO microwire, Chemical Physics Letters. 577(2013)88–91.
DOI: 10.1016/j.cplett.2013.05.037
Google Scholar
[14]
W. J. Park, M. H. Kim, B. H. Koo, W. J. Choi, J. Lee, J. M. Baik, Alternatively driven dual nanowire arrays by ZnO and CuO for selective sensing of gases, Sensors and Actuators B. 185(2013)10– 16.
DOI: 10.1016/j.snb.2013.04.038
Google Scholar
[15]
J. Guan, J. Peng and X. Jin, Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide, Anal. Methods. 7(2015)5454–5461.
DOI: 10.1039/c5ay00895f
Google Scholar
[16]
X. Liu, Q. Ren, F. Fu, R. Zou, Q. Wang, G. Xin, Z. Xiao, X. Huang, Q. Liu and J. Hu, CuS@mSiO2-PEG core–shell nanoparticles as a NIR light responsive drug delivery nanoplatform for efficient chemo-photothermal therapy, Dalton Trans. 44(2015).
DOI: 10.1039/c5dt00198f
Google Scholar
[17]
L. Tan, Z. Wu, X. Wang and J. Sun, Facile synthesis of CuS mesostructures with high photothermal conversion efficiency, RSC Adv. 5(2015)35317–35324.
DOI: 10.1039/c5ra01835h
Google Scholar
[18]
W. Shuang, X. Wang, G. Wang, Y. Guo, K. Wang, G. Yang, L. Zhu and L. Yang, Facile and controlled synthesis of stable water-soluble cupric sulfide quantum dots for significantly inhibiting the proliferation of cancer cells, J. Mater. Chem. B, in press.
DOI: 10.1039/c5tb00960j
Google Scholar
[19]
F. Lu, J. Wang, L. Yang and J. Zhu, A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO2 nanocomposites for the combination of photothermal therapy and chemotherapy, Chem. Commun. 51(2015)9447—9450.
DOI: 10.1039/c5cc01725d
Google Scholar
[20]
Y. Wang, F. Liu, Y. Ji, M. Yang, W. Liu, W. Wang, Q. Sun, Z. Zhang, X. Zhao and X. Liu, Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors, Dalton Trans. 44(2015)10431–10437.
DOI: 10.1039/c5dt00402k
Google Scholar
[21]
Q. Shu, J. Lan, M. Gao, J. Wang and C. Huang, Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light, Cryst. EngComm. 17(2015)1374–1380.
DOI: 10.1039/c4ce02120g
Google Scholar
[22]
Z. Shi and A. V. Walker, Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology, Langmuir. 31(2015)1421−1428.
DOI: 10.1021/la5040239
Google Scholar
[23]
M. Yue, M. Yang, D. Zhang, D. Xiang, Y. Hou, and J. Han, Hybrid Au/ZnO Hexagonal Pyramid Nanostructures: Preferred Growth on the Apexes of the Basal Plane than on the Tip, J. Phys. Chem. C. 119(2015)4199−4207.
DOI: 10.1021/jp512570b
Google Scholar
[24]
K. Choudhary, V. Manjuladevi, R. K. Gupta, P. Bhattacharyya, A. Hazra, and S. Kumar, Ultrathin Films of TiO2 Nanoparticles at Interfaces, Langmuir. 31(2015)1385−1392.
DOI: 10.1021/la503514p
Google Scholar
[25]
S. Tarish, Z. Wang, A. Al-Haddad, C. Wang, A. Ispas, H. Romanus, P. Schaaf, and Y. Lei, Synchronous Formation of ZnO/ZnS Core/Shell Nanotube Arrays with Removal of Template for Meliorating Photoelectronic Performance, J. Phys. Chem. C. 119(2015).
DOI: 10.1021/jp510835n
Google Scholar
[26]
S. Hsu, C. Ngo, W. Bryks, and A. R. Tao, Shape Focusing During the Anisotropic Growth of CuS Triangular Nanoprisms, Chem. Mater., in press.
DOI: 10.1021/acs.chemmater.5b01223
Google Scholar
[27]
J. Ludwig, L. An, B. Pattengale, Q. Kong, X. Zhang, P. Xi, and J. Huang, Ultrafast Hole Trapping and Relaxation Dynamics in p‑Type CuS Nanodisks, J. Phys. Chem. Lett. 6(2015)2671−2675.
DOI: 10.1021/acs.jpclett.5b01078
Google Scholar
[28]
Z. Liu, J. Han, K. Guo, X. Zhang and T. Hong, Jalpaite Ag3CuS2: a novel promising ternary sulfide absorber material for solar cells, Chem. Commun. 51(2015)2597-2600.
DOI: 10.1039/c4cc09111f
Google Scholar
[29]
G. Hou, Z. Cheng, L. Kang, X. Xu, F. Zhang and H. Yang, Controllable synthesis of CuS decorated TiO2 nanofibers for enhanced photocatalysis, CrystEngComm, 2015 in press.
DOI: 10.1039/c5ce00948k
Google Scholar
[30]
C. Ray, S. Sarkar, S. Dutta, A. Roy, R. Sahoo, Y. Negishi and T. Pal, Evolution of tubular copper sulfide nanostructures from copper(I)–metal organic precursor: a superior platform for the removal of Hg(II) and Pb(II) ions, RSC Adv. 5(2015).
DOI: 10.1039/c4ra09999k
Google Scholar
[31]
M. Ye, X. Wen, N. Zhang, W. Guo, X. Liu and C. Lin, In situ growth of CuS and Cu1. 8S nanosheet arrays as efficient counter electrodes for quantum dotsensitized solar cells, J. Mater. Chem. A. 3(2015)9595–9600.
DOI: 10.1039/c5ta00390c
Google Scholar
[32]
Q. Shu, C. Li, P. Gao, M. Gao and C. Huang, Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step, RSC Adv. 5(2015)17458–17465.
DOI: 10.1039/c4ra14609c
Google Scholar
[33]
X. Guan, L. Yang, X. Guan and G. Wang, Synthesis of a flower-like CuS/ZnS nanocomposite decorated on reduced graphene oxide and its photocatalytic performance, RSC Adv. 5(2015)36185–36191.
DOI: 10.1039/c5ra04030b
Google Scholar
[34]
A. Caminade and C. Turrin, Dendrimers for drug delivery, J. Mater. Chem. B. 2(2014)4055–4066.
DOI: 10.1039/c4tb00171k
Google Scholar
[35]
G. Gunkel-Grabole, S. Sigg, M. Lomora, S. Lörcher, C. G. Palivan and W. P. Meier, Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules, Biomater. Sci. 3(2015)25–40.
DOI: 10.1039/c4bm00230j
Google Scholar
[36]
H. Gheybia and M. Adeli, Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers, Polym. Chem. 6(2015)2580–2615.
DOI: 10.1039/c4py01437e
Google Scholar
[37]
L. Kong, C. S. Alves, W. Hou, J. Qiu, H. Möhwald, H. Tomás, and X. Shi, RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells, ACS Appl. Mater. Interfaces. 7(2015)4833−4843.
DOI: 10.1021/am508760w
Google Scholar
[38]
J. Yang, Q. Zhang, H. Chang, and Y. Cheng, Surface-Engineered Dendrimers in Gene Delivery, Chem. Rev. 115(2015)5274−5300.
DOI: 10.1021/cr500542t
Google Scholar
[39]
H. Wang, W. Tang, H. Wei, Y. Zhao, S. Hu, Y. Guan, W. Pan, B. Xia, N. Li and F. Liu, Integrating dye-intercalated DNA dendrimers with electrospun nanofibers: a new fluorescent sensing platform for nucleic acids, proteins, and cells, J. Mater. Chem. B. 3(2015).
DOI: 10.1039/c5tb00357a
Google Scholar
[40]
F. Li, J. Peng, Q. Zheng, X. Guo, H. Tang, and S. Yao, Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24, Anal. Chem. 87(2015)4806−4813.
DOI: 10.1021/acs.analchem.5b00093
Google Scholar
[41]
E. Soršak, J. Volmajer Valh, Š. Korent Urek and A. Lobnik, Application of PAMAM dendrimers in optical sensing, Analyst. 140(2015)976-989.
DOI: 10.1039/c4an00825a
Google Scholar
[42]
L. Chong and M. Dutt, Design of PAMAM-COO dendron-grafted surfaces to promote Pb(II) ion adsorption, Phys. Chem. Chem. Phys. 17(2015)10615—10623.
DOI: 10.1039/c5cp00309a
Google Scholar
[43]
K. J. Shah, T. Imae and A. Shukla, Selective capture of CO2 by poly(amido amine) dendrimer-loaded organoclays, RSC Adv. 5(2015)35985–35992.
DOI: 10.1039/c5ra04904k
Google Scholar
[44]
A. Kannan and P. Rajakumar, Synthesis and catalytic application of glycodendrimers decorated with gold nanoparticles – reduction of 4-nitrophenol, RSC Adv. 5(2015)46908–46915.
DOI: 10.1039/c5ra06375b
Google Scholar
[45]
W. Jiang, Y. Zhou and D. Yan, Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications, Chem. Soc. Rev. 44(2015)3874—3889.
DOI: 10.1039/c4cs00274a
Google Scholar
[46]
V. Brunetti, a L. M. Boucheta and M. C. Strumia, Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems, Nanoscale. 7(2015)3808–3816.
DOI: 10.1039/c4nr04438j
Google Scholar
[47]
H. Sun, S. Zhang and V. Percec, From structure to function via complex supramolecular dendrimer systems, Chem. Soc. Rev. 44(2015)3900-3923.
DOI: 10.1039/c4cs00249k
Google Scholar
[48]
W. Wu, R. Tang, Q. Li and Z. Li, Functional hyperbranched polymers with advanced optical, electrical and magnetic properties, Chem. Soc. Rev. 44(2015)3997—4022.
DOI: 10.1039/c4cs00224e
Google Scholar
[49]
R. Soleymana and M. Adeli, Impact of dendritic polymers on nanomaterials, Polym. Chem. 6(2015)10–24.
Google Scholar
[50]
I. Gadwal and A. Khan, Multiply functionalized dendrimers: protectivegroup-free synthesis through sequential thiolepoxy click, chemistry and esterification reaction, RSC Adv. 5(2015)43961–43964.
DOI: 10.1039/c5ra05820a
Google Scholar
[51]
K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials, Angew. Chem. Int. Ed. 54(2015)5677–5682.
DOI: 10.1002/anie.201500203
Google Scholar
[52]
S. Yang, and S. C. Zimmerman, Water-Soluble Polyglycerol Dendrimers with Two Orthogonally Reactive Core Functional Groups for One-Pot Functionalization, Macromolecules. 48(2015)2504−2508.
DOI: 10.1021/acs.macromol.5b00164
Google Scholar
[53]
X. Li, Y. Watanabe, E. Yuba, A. Harada, T. Haino and K. Kono, Facile construction of well-defined fullerene–dendrimer supramolecular nanocomposites for bioapplications, Chem. Commun. 51(2015)2851-2854.
DOI: 10.1039/c4cc09082a
Google Scholar
[54]
H. K. Alajangi and D. Santhiya, Fluorescence and Fo¨rster resonance energy transfer investigations on DNA oligonucleotide and PAMAM dendrimer packing interactions in dendriplexes, Phys. Chem. Chem. Phys. 17(2015)8680-8691.
DOI: 10.1039/c4cp05295a
Google Scholar
[55]
E. Fedeli, A. Lancelot, J. L. Serrano, P. Calvo and T. Sierra, Self-assembling amphiphilic Janus dendrimers: mesomorphic properties and aggregation in water, New J. Chem. 39(2015)1960-(1967).
DOI: 10.1039/c4nj02071e
Google Scholar
[56]
P. Wessig, D. Budach, and Andreas F. Th_nemann, Dendrimers with Oligospiroketal (OSK) Building Blocks: Synthesis and Properties, Chem. Eur. J. 21(2015), in press.
DOI: 10.1002/chem.201501386
Google Scholar
[57]
F. Setaro, M. Brasch, U. Hahn, M. S. T. Koay, J. J. L. M. Cornelissen, Andrés de la Escosura, and T. Torres, Generation-Dependent Templated Self-Assembly of Biohybrid Protein Nanoparticles around Photosensitizer Dendrimers, Nano Lett. 15(2015).
DOI: 10.1021/nl5044055
Google Scholar
[58]
H. Nagatani, H. Sakae, T. Torikai, T. Sagara, and H. Imura, Photoinduced Electron Transfer of PAMAM Dendrimer−Zinc(II) Porphyrin Associates at Polarized Liquid|Liquid Interfaces, Langmuir. 31(2015)6237−6244.
DOI: 10.1021/acs.langmuir.5b01165
Google Scholar
[59]
Y. Zeng, P. Li, X. Liu, T. Yu, J. Chen, G. Yang and Y. Li, A breathing, dendritic molecule—conformational fluctuation induced by external stimuli, Polym. Chem. 5(2014) 5978-5984.
DOI: 10.1039/c4py00714j
Google Scholar
[60]
Z. Xun, T. Yu, Y. Zeng, J. Chen, X. Zhang, G. Yang and Y. Li, Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production, J. Mater. Chem. A. 3(2015)12965-12971.
DOI: 10.1039/c5ta02565f
Google Scholar
[61]
X. Liu, B. He, Z. Xu, M. Yin, W. Yang, H. Zhang, J. Cao and J. Shen, A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control, Nanoscale. 7(2015)445-449.
DOI: 10.1039/c4nr05733c
Google Scholar
[62]
X. Ma, Y. Wang, M. Gao, H. Xu, and G. Li, A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets, Catalysis Today. 158(2010)459–463.
DOI: 10.1016/j.cattod.2010.07.013
Google Scholar
[63]
Q. Cong, X. He, M. Gao, X. Ma, G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization, Materials Research Innovations. 18(2014) 740-746.
DOI: 10.1179/1432891714z.000000000775
Google Scholar