Surface Modification of Low-Dimensional Heterostructured Functional Materials with Dendrimers and their Properties of Organic-Inorganic Nanocomposites

Article Preview

Abstract:

Low-dimensional heterostructured functional materials have been widely applied in new energy materials, catalysts, et al. However, to enhance photo-response in visible light and the biocompatibility improvement are still the great challenges faced. And the dendrimers act good roles in transferring the drug and gene, and has good biocompatibility. Self-assembly on the surface of low-dimensional heterostructured functional materials with dendrimers holding-COOH groups was carried out in this paper. The characterizations of the materials were examined by SEM (scanning electron microscopy), XRD (X-ray diffraction), the Fourier-Transform Infrared (FTIR) spectra, ultraviolet-visible spectroscopy (UV-Vis) and so on. The photoconductivity response to visible light and 808 nm laser with low-power were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate. The results indicated that ZnO/CuS modified with dendrimers showed good photo-response to visible light and 808 nm laser, the photo-response properties enhanced greatly by adding some small amount of grapheme oxide. Photocatalytic efficiency was examined by selecting typical organic pollutants, some good results were obtained. The external stimuli driven nanorobots for removal the organic pollutants or toxins in the living body have been developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-307

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Feng, R. Jia, B. Dou, H. Li, Z. Jin, X. Liu, F. Li, W. Zhang, and C. Wu, Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application, Applied Physics Letters. 106 (2015)053118.

DOI: 10.1063/1.4907645

Google Scholar

[2] Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation, Applied Catalysis B: Environmental. 138-139(2013)26– 32.

DOI: 10.1016/j.apcatb.2013.02.011

Google Scholar

[3] Y. Hong, J. Zhang, F. Huang, J. Zhang, X. Wang, Z. Wu, Z. Lin and J. Yu, Enhanced visible light photocatalytic hydrogen production activity of CuS/ZnS nanoflower spheres, J. Mater. Chem. A. 3(2015)13913–13919.

DOI: 10.1039/c5ta02500a

Google Scholar

[4] W. Zhang, Y. Sun, Z. Xiao, W. Li, B. Li, X. Huang, X. Liu and J. Hu, Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties, J. Mater. Chem. A. 3(2015)7304–7313.

DOI: 10.1039/c5ta00560d

Google Scholar

[5] C. Mondal, A. Singh, R. Sahoo, A. K. Sasmal, Y. Negishi and T. Pal, Preformed ZnS nanoflower prompted evolution of CuS/ZnS p–n heterojunctions for exceptional visible-light driven photocatalytic activity, New J. Chem, in press.

DOI: 10.1039/c5nj00128e

Google Scholar

[6] J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan and Muthupandian Ashokkumar, Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity, RSC Adv. 5(2015)52718–52725.

DOI: 10.1039/c5ra06512g

Google Scholar

[7] M. Tanveer, C. Cao, I. Aslam, Z. Ali, F. Idrees, W. S. Khan, M. Tahir, S. Khalid, G. Nabi and A. Mahmood, Synthesis of CuS flowers exhibiting versatile photo-catalyst response, New J. Chem. 39(2015)1459—1468.

DOI: 10.1039/c4nj01834f

Google Scholar

[8] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S D Na2SO3 solution, international journal of hydrogen energy. 38(2013)8625 -8630.

DOI: 10.1016/j.ijhydene.2013.04.131

Google Scholar

[9] Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao and Y. Xie, A controlled solvothermal synthesis of CuS hierarchical structures and their natural-lightinduced photocatalytic properties, New J. Chem, in press.

DOI: 10.1039/c4nj02298j

Google Scholar

[10] M. Saranya, R. Ramachandran, P. Kollu, S. K. Jeong and A. N. Grace, A template-free facile approach for the synthesis of CuS–rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents. RSC Adv. 5(2015).

DOI: 10.1039/c4ra09029b

Google Scholar

[11] C. Zhang, M. Shaon, F. Ning, S. Xu, Z. Li, M. Wein, David G. Evans, X. Duan, Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting, Nano Energy. 12(2015)231–239.

DOI: 10.1016/j.nanoen.2014.12.037

Google Scholar

[12] C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, Surface Passivation Effect on the Photoluminescence of ZnO Nanorods, ACS Appl. Mater. Interfaces. 5(2013)6354−6359.

DOI: 10.1021/am401418b

Google Scholar

[13] M. Din, D. Zhao, B. Yao, B. Zhao, X. Xu, High brightness light emitting diode based on single ZnO microwire, Chemical Physics Letters. 577(2013)88–91.

DOI: 10.1016/j.cplett.2013.05.037

Google Scholar

[14] W. J. Park, M. H. Kim, B. H. Koo, W. J. Choi, J. Lee, J. M. Baik, Alternatively driven dual nanowire arrays by ZnO and CuO for selective sensing of gases, Sensors and Actuators B. 185(2013)10– 16.

DOI: 10.1016/j.snb.2013.04.038

Google Scholar

[15] J. Guan, J. Peng and X. Jin, Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide, Anal. Methods. 7(2015)5454–5461.

DOI: 10.1039/c5ay00895f

Google Scholar

[16] X. Liu, Q. Ren, F. Fu, R. Zou, Q. Wang, G. Xin, Z. Xiao, X. Huang, Q. Liu and J. Hu, CuS@mSiO2-PEG core–shell nanoparticles as a NIR light responsive drug delivery nanoplatform for efficient chemo-photothermal therapy, Dalton Trans. 44(2015).

DOI: 10.1039/c5dt00198f

Google Scholar

[17] L. Tan, Z. Wu, X. Wang and J. Sun, Facile synthesis of CuS mesostructures with high photothermal conversion efficiency, RSC Adv. 5(2015)35317–35324.

DOI: 10.1039/c5ra01835h

Google Scholar

[18] W. Shuang, X. Wang, G. Wang, Y. Guo, K. Wang, G. Yang, L. Zhu and L. Yang, Facile and controlled synthesis of stable water-soluble cupric sulfide quantum dots for significantly inhibiting the proliferation of cancer cells, J. Mater. Chem. B, in press.

DOI: 10.1039/c5tb00960j

Google Scholar

[19] F. Lu, J. Wang, L. Yang and J. Zhu, A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO2 nanocomposites for the combination of photothermal therapy and chemotherapy, Chem. Commun. 51(2015)9447—9450.

DOI: 10.1039/c5cc01725d

Google Scholar

[20] Y. Wang, F. Liu, Y. Ji, M. Yang, W. Liu, W. Wang, Q. Sun, Z. Zhang, X. Zhao and X. Liu, Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors, Dalton Trans. 44(2015)10431–10437.

DOI: 10.1039/c5dt00402k

Google Scholar

[21] Q. Shu, J. Lan, M. Gao, J. Wang and C. Huang, Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light, Cryst. EngComm. 17(2015)1374–1380.

DOI: 10.1039/c4ce02120g

Google Scholar

[22] Z. Shi and A. V. Walker, Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology, Langmuir. 31(2015)1421−1428.

DOI: 10.1021/la5040239

Google Scholar

[23] M. Yue, M. Yang, D. Zhang, D. Xiang, Y. Hou, and J. Han, Hybrid Au/ZnO Hexagonal Pyramid Nanostructures: Preferred Growth on the Apexes of the Basal Plane than on the Tip, J. Phys. Chem. C. 119(2015)4199−4207.

DOI: 10.1021/jp512570b

Google Scholar

[24] K. Choudhary, V. Manjuladevi, R. K. Gupta, P. Bhattacharyya, A. Hazra, and S. Kumar, Ultrathin Films of TiO2 Nanoparticles at Interfaces, Langmuir. 31(2015)1385−1392.

DOI: 10.1021/la503514p

Google Scholar

[25] S. Tarish, Z. Wang, A. Al-Haddad, C. Wang, A. Ispas, H. Romanus, P. Schaaf, and Y. Lei, Synchronous Formation of ZnO/ZnS Core/Shell Nanotube Arrays with Removal of Template for Meliorating Photoelectronic Performance, J. Phys. Chem. C. 119(2015).

DOI: 10.1021/jp510835n

Google Scholar

[26] S. Hsu, C. Ngo, W. Bryks, and A. R. Tao, Shape Focusing During the Anisotropic Growth of CuS Triangular Nanoprisms, Chem. Mater., in press.

DOI: 10.1021/acs.chemmater.5b01223

Google Scholar

[27] J. Ludwig, L. An, B. Pattengale, Q. Kong, X. Zhang, P. Xi, and J. Huang, Ultrafast Hole Trapping and Relaxation Dynamics in p‑Type CuS Nanodisks, J. Phys. Chem. Lett. 6(2015)2671−2675.

DOI: 10.1021/acs.jpclett.5b01078

Google Scholar

[28] Z. Liu, J. Han, K. Guo, X. Zhang and T. Hong, Jalpaite Ag3CuS2: a novel promising ternary sulfide absorber material for solar cells, Chem. Commun. 51(2015)2597-2600.

DOI: 10.1039/c4cc09111f

Google Scholar

[29] G. Hou, Z. Cheng, L. Kang, X. Xu, F. Zhang and H. Yang, Controllable synthesis of CuS decorated TiO2 nanofibers for enhanced photocatalysis, CrystEngComm, 2015 in press.

DOI: 10.1039/c5ce00948k

Google Scholar

[30] C. Ray, S. Sarkar, S. Dutta, A. Roy, R. Sahoo, Y. Negishi and T. Pal, Evolution of tubular copper sulfide nanostructures from copper(I)–metal organic precursor: a superior platform for the removal of Hg(II) and Pb(II) ions, RSC Adv. 5(2015).

DOI: 10.1039/c4ra09999k

Google Scholar

[31] M. Ye, X. Wen, N. Zhang, W. Guo, X. Liu and C. Lin, In situ growth of CuS and Cu1. 8S nanosheet arrays as efficient counter electrodes for quantum dotsensitized solar cells, J. Mater. Chem. A. 3(2015)9595–9600.

DOI: 10.1039/c5ta00390c

Google Scholar

[32] Q. Shu, C. Li, P. Gao, M. Gao and C. Huang, Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step, RSC Adv. 5(2015)17458–17465.

DOI: 10.1039/c4ra14609c

Google Scholar

[33] X. Guan, L. Yang, X. Guan and G. Wang, Synthesis of a flower-like CuS/ZnS nanocomposite decorated on reduced graphene oxide and its photocatalytic performance, RSC Adv. 5(2015)36185–36191.

DOI: 10.1039/c5ra04030b

Google Scholar

[34] A. Caminade and C. Turrin, Dendrimers for drug delivery, J. Mater. Chem. B. 2(2014)4055–4066.

DOI: 10.1039/c4tb00171k

Google Scholar

[35] G. Gunkel-Grabole, S. Sigg, M. Lomora, S. Lörcher, C. G. Palivan and W. P. Meier, Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules, Biomater. Sci. 3(2015)25–40.

DOI: 10.1039/c4bm00230j

Google Scholar

[36] H. Gheybia and M. Adeli, Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers, Polym. Chem. 6(2015)2580–2615.

DOI: 10.1039/c4py01437e

Google Scholar

[37] L. Kong, C. S. Alves, W. Hou, J. Qiu, H. Möhwald, H. Tomás, and X. Shi, RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells, ACS Appl. Mater. Interfaces. 7(2015)4833−4843.

DOI: 10.1021/am508760w

Google Scholar

[38] J. Yang, Q. Zhang, H. Chang, and Y. Cheng, Surface-Engineered Dendrimers in Gene Delivery, Chem. Rev. 115(2015)5274−5300.

DOI: 10.1021/cr500542t

Google Scholar

[39] H. Wang, W. Tang, H. Wei, Y. Zhao, S. Hu, Y. Guan, W. Pan, B. Xia, N. Li and F. Liu, Integrating dye-intercalated DNA dendrimers with electrospun nanofibers: a new fluorescent sensing platform for nucleic acids, proteins, and cells, J. Mater. Chem. B. 3(2015).

DOI: 10.1039/c5tb00357a

Google Scholar

[40] F. Li, J. Peng, Q. Zheng, X. Guo, H. Tang, and S. Yao, Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24, Anal. Chem. 87(2015)4806−4813.

DOI: 10.1021/acs.analchem.5b00093

Google Scholar

[41] E. Soršak, J. Volmajer Valh, Š. Korent Urek and A. Lobnik, Application of PAMAM dendrimers in optical sensing, Analyst. 140(2015)976-989.

DOI: 10.1039/c4an00825a

Google Scholar

[42] L. Chong and M. Dutt, Design of PAMAM-COO dendron-grafted surfaces to promote Pb(II) ion adsorption, Phys. Chem. Chem. Phys. 17(2015)10615—10623.

DOI: 10.1039/c5cp00309a

Google Scholar

[43] K. J. Shah, T. Imae and A. Shukla, Selective capture of CO2 by poly(amido amine) dendrimer-loaded organoclays, RSC Adv. 5(2015)35985–35992.

DOI: 10.1039/c5ra04904k

Google Scholar

[44] A. Kannan and P. Rajakumar, Synthesis and catalytic application of glycodendrimers decorated with gold nanoparticles – reduction of 4-nitrophenol, RSC Adv. 5(2015)46908–46915.

DOI: 10.1039/c5ra06375b

Google Scholar

[45] W. Jiang, Y. Zhou and D. Yan, Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications, Chem. Soc. Rev. 44(2015)3874—3889.

DOI: 10.1039/c4cs00274a

Google Scholar

[46] V. Brunetti, a L. M. Boucheta and M. C. Strumia, Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems, Nanoscale. 7(2015)3808–3816.

DOI: 10.1039/c4nr04438j

Google Scholar

[47] H. Sun, S. Zhang and V. Percec, From structure to function via complex supramolecular dendrimer systems, Chem. Soc. Rev. 44(2015)3900-3923.

DOI: 10.1039/c4cs00249k

Google Scholar

[48] W. Wu, R. Tang, Q. Li and Z. Li, Functional hyperbranched polymers with advanced optical, electrical and magnetic properties, Chem. Soc. Rev. 44(2015)3997—4022.

DOI: 10.1039/c4cs00224e

Google Scholar

[49] R. Soleymana and M. Adeli, Impact of dendritic polymers on nanomaterials, Polym. Chem. 6(2015)10–24.

Google Scholar

[50] I. Gadwal and A. Khan, Multiply functionalized dendrimers: protectivegroup-free synthesis through sequential thiolepoxy click, chemistry and esterification reaction, RSC Adv. 5(2015)43961–43964.

DOI: 10.1039/c5ra05820a

Google Scholar

[51] K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials, Angew. Chem. Int. Ed. 54(2015)5677–5682.

DOI: 10.1002/anie.201500203

Google Scholar

[52] S. Yang, and S. C. Zimmerman, Water-Soluble Polyglycerol Dendrimers with Two Orthogonally Reactive Core Functional Groups for One-Pot Functionalization, Macromolecules. 48(2015)2504−2508.

DOI: 10.1021/acs.macromol.5b00164

Google Scholar

[53] X. Li, Y. Watanabe, E. Yuba, A. Harada, T. Haino and K. Kono, Facile construction of well-defined fullerene–dendrimer supramolecular nanocomposites for bioapplications, Chem. Commun. 51(2015)2851-2854.

DOI: 10.1039/c4cc09082a

Google Scholar

[54] H. K. Alajangi and D. Santhiya, Fluorescence and Fo¨rster resonance energy transfer investigations on DNA oligonucleotide and PAMAM dendrimer packing interactions in dendriplexes, Phys. Chem. Chem. Phys. 17(2015)8680-8691.

DOI: 10.1039/c4cp05295a

Google Scholar

[55] E. Fedeli, A. Lancelot, J. L. Serrano, P. Calvo and T. Sierra, Self-assembling amphiphilic Janus dendrimers: mesomorphic properties and aggregation in water, New J. Chem. 39(2015)1960-(1967).

DOI: 10.1039/c4nj02071e

Google Scholar

[56] P. Wessig, D. Budach, and Andreas F. Th_nemann, Dendrimers with Oligospiroketal (OSK) Building Blocks: Synthesis and Properties, Chem. Eur. J. 21(2015), in press.

DOI: 10.1002/chem.201501386

Google Scholar

[57] F. Setaro, M. Brasch, U. Hahn, M. S. T. Koay, J. J. L. M. Cornelissen, Andrés de la Escosura, and T. Torres, Generation-Dependent Templated Self-Assembly of Biohybrid Protein Nanoparticles around Photosensitizer Dendrimers, Nano Lett. 15(2015).

DOI: 10.1021/nl5044055

Google Scholar

[58] H. Nagatani, H. Sakae, T. Torikai, T. Sagara, and H. Imura, Photoinduced Electron Transfer of PAMAM Dendrimer−Zinc(II) Porphyrin Associates at Polarized Liquid|Liquid Interfaces, Langmuir. 31(2015)6237−6244.

DOI: 10.1021/acs.langmuir.5b01165

Google Scholar

[59] Y. Zeng, P. Li, X. Liu, T. Yu, J. Chen, G. Yang and Y. Li, A breathing, dendritic molecule—conformational fluctuation induced by external stimuli, Polym. Chem. 5(2014) 5978-5984.

DOI: 10.1039/c4py00714j

Google Scholar

[60] Z. Xun, T. Yu, Y. Zeng, J. Chen, X. Zhang, G. Yang and Y. Li, Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production, J. Mater. Chem. A. 3(2015)12965-12971.

DOI: 10.1039/c5ta02565f

Google Scholar

[61] X. Liu, B. He, Z. Xu, M. Yin, W. Yang, H. Zhang, J. Cao and J. Shen, A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control, Nanoscale. 7(2015)445-449.

DOI: 10.1039/c4nr05733c

Google Scholar

[62] X. Ma, Y. Wang, M. Gao, H. Xu, and G. Li, A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets, Catalysis Today. 158(2010)459–463.

DOI: 10.1016/j.cattod.2010.07.013

Google Scholar

[63] Q. Cong, X. He, M. Gao, X. Ma, G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization, Materials Research Innovations. 18(2014) 740-746.

DOI: 10.1179/1432891714z.000000000775

Google Scholar