[1]
D. Meadows, J. Randers and D. Meadows: Limits to growth –The 30 year update,; 2005, London, Earthscan.
Google Scholar
[2]
J. Hu, F. Gao, Z. Wang and X. Gong: Life Cycle Assessment of Steel Production, Mater. Sci. Forum., 2014, 787, 102-105.
DOI: 10.4028/www.scientific.net/msf.787.102
Google Scholar
[3]
C. Li, S. Cui, Z. Nie, X. Gong, Z. Wang and N. Itsubo: The LCA of Portland cement production in China, Int. J. Life Cycle Assess., 2015, 20, (1), 117-127.
DOI: 10.1007/s11367-014-0804-4
Google Scholar
[4]
F. Gao, Z. Nie, Z. Wang, X. Gong and T. Zuo: Life cycle assessment of primary magnesium production using the Pidgeon process in China, Int. J. Life Cycle Assess., 2009, 14, (5), 480-489.
DOI: 10.1007/s11367-009-0101-9
Google Scholar
[5]
H. Zeng: The change in the meaning of "world factory" and the idea of life cycle,. Dev. Res., 2009, 1, 50-53. (in Chinese).
Google Scholar
[6]
China Nonferrous Metals Industry Association: The yearbook of nonferrous metals industry of China 2013,; 2013, Beijing, Organization of the yearbook of nonferrous metals industry of China. (in Chinese).
DOI: 10.1016/s1003-6326(13)62800-9
Google Scholar
[7]
U.S. Geological Survey. U.S. Department of the Interior: Mineral Commodity Summaries 2015,. http: /minerals. usgs. gov/minerals/pubs/; (2015).
Google Scholar
[8]
J. Jiang, J. Xu, S. Hou, Y. Liu and J. Dai: LCA study on electrolytic Nickel and Copper produced by coexistence ore, Acta Scien. Circum., 2005, 25, (11), 1570-1574.
Google Scholar
[9]
H. Yu and J. Chen: Life cycle assessment of nickel production, Yunan. Metall., 2007, 36, (4), 38-41. (in Chinese).
Google Scholar
[10]
G. Finnveden: The resource debate needs to continue, Int. J. Life Cycle Assess., 2005, 10, (5), 372.
Google Scholar
[11]
B. Steen. Abiotic Resource Depletion: Different perceptions of the problem with mineral deposits, Int. J. Life Cycle Assess., 2006, 11, (Special Issue 1), 49-54.
DOI: 10.1065/lca2006.08.269
Google Scholar
[12]
M. Rosen and I. Dincer: On exergy and environmental impact,. Int. J. Energy., 1997, 21, (7), 643-654.
Google Scholar
[13]
J. Szargut: Exergy method: Technical and ecological applications,; 2005, Southampton, WIT Press.
Google Scholar
[14]
P. Michaelis, T. Jackson, and R. Clift: Exergy analysis of the life cycle of steel, Energy, 1998, 23, (3), 213-220.
DOI: 10.1016/s0360-5442(97)00081-9
Google Scholar
[15]
M. Costa, R. Schaeffer, and E. Worrell: Exergy accounting of energy and materials flows in steel production systems, Energy, 2001, 26, (4), 363-384.
DOI: 10.1016/s0360-5442(01)00004-4
Google Scholar
[16]
O. Ostrovski and G. Zhang: Energy and exergy analyses of direct iron smelting processes, Energy, 2005, 30, (15), 2772-2783.
Google Scholar
[17]
B. Sun, Z. Nie, F. Gao, Y. Liu, Z. Wang and X. Gong: Cumulative exergy demand analysis of the primary aluminum produced in China and its natural resource-saving potential in transportation, Int. J. Life Cycle Assess., 2015. (Online).
DOI: 10.1007/s11367-014-0828-9
Google Scholar
[18]
F. Gao, Z. Nie, Z. Wang, X. Gong X and T. Zuo: Characterization and normalization factors of abiotic resource depletion for life cycle assessment in China, Sci. China. Ser E., 2009, 52, (1), 215-222.
DOI: 10.1007/s11431-009-0028-1
Google Scholar
[19]
B. Yuan, Z. Nie, X. Di and T. Zuo: Life cycle inventories of fossil fuels in China: 'Final life cycle inventories, Mod. Chem. Ind., 2006, 26, (4), 59-61. (in Chinese).
Google Scholar
[20]
B. Sun, Y. Liu Y, Z. Nie, Y. Zhang and F. Gao: Exergy-based model for quantifying land resource in China: a case study of sintered brick, Int. J. Exergy., 2014, 15, (4), 429-446.
DOI: 10.1504/ijex.2014.066611
Google Scholar
[21]
Expert committee of China nonferrous metals industry association: China's nickel industry,; 2013, Beijing, Metallurgical Industry Press. (in Chinese).
Google Scholar
[22]
X. Di, Z. Nie, B. Yuan and T. Zuo: Life Cycle Inventory for electricity generation in China, Int. J. Life Cycle Assess., 2007, 12, (4), 217-224.
DOI: 10.1065/lca2007.05.331
Google Scholar
[23]
B. Sun, Z. Nie, Y. Liu, X. Gong, F. Gao and Z. Wang: Research on life cycle CO2 emissions of energy carriers in China, Mater. Res. Innov., 2014, 18, (S4), 56-61.
DOI: 10.1179/1432891714z.000000000646
Google Scholar
[24]
Editorial Board of the design handbook of the metallurgy of heavy nonferrous metals: The design handbook of the metallurgy of heavy nonferrous metals,; 2007, Beijing, Metallurgical Industry Press. (in Chinese).
Google Scholar
[25]
B. Sun, Z. Nie, Y. Liu, Z. Wang and X. Gong: Exergy-based model of the depletion of mineral resources, Mater. Sci. Forum., 2010, 650, 1-8.
DOI: 10.4028/www.scientific.net/msf.650.1
Google Scholar
[26]
B. Sun, Z. Nie and F. Gao: Cumulative exergy consumption of energy carriers in China, Int. J. Exergy., 2014, 15, (2), 196-213.
DOI: 10.1504/ijex.2014.065646
Google Scholar
[27]
A. Domínguez, A. Valero and A. Valero: Exergy accounting applied to metallurgical systems: The case of nickel processing, Energy, 2013, 62, 37-45.
DOI: 10.1016/j.energy.2013.03.089
Google Scholar
[28]
B. Sun: Exergy based life cycle assessment and its application in materials industry, PhD thesis, Beijing University of Technology, Beijing, China, 2012. (in Chinese).
Google Scholar
[29]
N. Pelletier, F. Ardente, M. Brandao, C. Camillis and D. Pennington: Rationales for and limitations of preferred solutions for multi-functionality problems in LCA: is increased consistency possible, Int. J. Life Cycle Assess., 2015, 20, (1), 74-86.
DOI: 10.1007/s11367-014-0812-4
Google Scholar