Synthesis, Electrical Properties and Chemical Stability of BaCe0.7In0.3-xGdxO3-δ

Article Preview

Abstract:

In3+, Gd3+ were selected as substitution elements for Ce4+ in order to increase electrical conductivity and chemical stability of BaCeO3. A modified sol-gel method was used to fabricate BaCe0.7In0.3-xGdxO3-δ (x = 0, 0.1, 0.2, 0.3) nanopowders. XRD results indicated that the diffraction angle moved to lower with increase of the Gd3 + doping concentration, so that the interplanar spacing gradually increased. The impedance spectra analysis showed that conductivity first increased (x = 0~0.2) and then decreased with the Gd3 + doping increase. The total conductivities at 800oC were 3.8 × 10-3 S·cm-1 (x = 0), 8.0 × 10-3 S· cm-1 (x = 0.1), 2.5 × 10-2 S· cm-1 (x = 0.2), 1.36 × 10-2 S ·cm-1 (x = 0.3). Chemical stability test in CO2 show that all samples except for x=0.3 sample calcination at 800oC for 2h under 100% CO2 and x=0, 0.1 samples heating in boiling water for 12h kept main perovskite structure. Therefore, x=0.1 sample show better electrical conductivity and chemical stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

401-410

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature. 431(2004) 170-173.

DOI: 10.1038/nature02863

Google Scholar

[2] T. Norby, Solid-state protonic conductors: principles, properties, progress and prospects, Solid State Ionics. 125(1999) 1-11.

DOI: 10.1016/s0167-2738(99)00152-6

Google Scholar

[3] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature. 414 (2001) 345-347.

Google Scholar

[4] K.D. Kreuer. Annu, Proton-conducting oxides, Rev. Mater. Res. 33 (2003) 333-359.

DOI: 10.1146/annurev.matsci.33.022802.091825

Google Scholar

[5] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application, Solid State Ionics. 3/4 (1981) 359-363.

DOI: 10.1016/0167-2738(81)90113-2

Google Scholar

[6] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, Proton conduction in sintered oxides based on BaCeO3, J. Electrochem. Soc. 135 (1988) 529-533.

DOI: 10.1149/1.2095649

Google Scholar

[7] C. Chen, G.L. Ma, Proton conduction in BaCe1−xGdxO3−α at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure, J. Alloys Compd. 485(2009) 69-72.

DOI: 10.1016/j.jallcom.2009.05.108

Google Scholar

[8] L. Pelletier, A. McFarlan, N. Maffeiz, Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes, J. of Power Sources. 145 (2005) 262-265.

DOI: 10.1016/j.jpowsour.2005.02.040

Google Scholar

[9] E.C.C. de Souza, R. Muccillo, Properties and applications of perovskite proton conductors, Materials Research. 13(2010) 385-394.

DOI: 10.1590/s1516-14392010000300018

Google Scholar

[10] N.I. Matskevich, Enthalpy of formation of BaCe0. 9In0. 1O3−δ, J. Therm. Anal. Calorim. 90(2007) 955-958.

DOI: 10.1007/s10973-007-8559-9

Google Scholar

[11] L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, W. Liu, Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell, Int. J. Hydrogen Energy. 34(2009) 2421-2425.

DOI: 10.1016/j.ijhydene.2008.12.087

Google Scholar

[12] M. Amsif, D. Marrero-Lopez, J.C. Ruiz-Morales, S.N. Savvin, M. Gabás, P. Nunez, Influence of rare-earth doping on the microstructure and conductivity of BaCe0. 9Ln0. 1O3−δ proton conductors, J. Power Sources. 196 (2011) 3461-3469.

DOI: 10.1016/j.jpowsour.2010.11.120

Google Scholar

[13] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, A novel anode supported BaCe0. 7Ta0. 1Y0. 2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochem. Commun. 10(2008)1598-1601.

DOI: 10.1016/j.elecom.2008.08.024

Google Scholar

[14] K. Xie, R.Q. Yan, X.Q. Liu, Stable BaCe0. 7Ti0. 1Y0. 2O3−δ proton conductor for solid oxide fuel cells, J. Alloys Compd. 479(2009) L40-L42.

DOI: 10.1016/j.jallcom.2009.01.011

Google Scholar

[15] K. Xie, R.Q. Yan, X.X. Xu, X.Q. Liu, G.Y. Meng, The chemical stability and conductivity of BaCe0. 9−xYxNb0. 1O3−σ proton-conductive electrolyte for SOFC, Mater. Res. Bull. 44(2009)1474–1480.

DOI: 10.1016/j.materresbull.2009.02.015

Google Scholar

[16] K. Xie, R.Q. Yan, X.Q. Liu, The chemical stability and conductivity of BaCe0. 9−xYxSn0. 1O3−δ solid proton conductor for SOFC, J. Alloys Compd. 479(2009) L36- L39.

DOI: 10.1016/j.jallcom.2008.12.120

Google Scholar

[17] F. Genet, S. Loridant, G. Lucazeau, Vibrational normal modes of the phase of BaCeO3: a critical comparison of force fields, J. Raman Spectrosc. 28(1997) 255-276.

DOI: 10.1002/(sici)1097-4555(199704)28:4<255::aid-jrs95>3.0.co;2-f

Google Scholar

[18] H.C. Gupta, P. Simon, T. Pagnier, G. Lucazeau, Force constant calculation from Raman and IR spectra in the three non-cubic phases of BaCeO3, J. Raman Spectrosc. 32(2001) 331-337.

DOI: 10.1002/jrs.700

Google Scholar