Replacement of High-Purity Copper Target by High-Purity Copper Alloy Target in Very Large Scale Integrated Circuit

Article Preview

Abstract:

With the development of semiconductor technology, the size of complementary metal oxide semiconductor (CMOS) devices has been scaled down to nanoscale dimensions. The technology of copper interconnection is the mainstream technology, so the request of the copper target is more and more rigor. This article analyzes the impact factors on the copper alloy target capability, including oxidation and strength. The aim of this investigation is to set up a bridge between the vendors of copper targets and the foundries of integrated circuit (IC) chip, and the base for the next generation copper targets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

430-434

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hansan, J.F. Rohan., Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications J. Electrochem Soc., 157(2010) D278-D282.

DOI: 10.1149/1.3332729

Google Scholar

[2] S. Vaidya et al., Line width Dependence of electromigration in Evaporated Al-0. 5Cu , Appl. Phys. Lett. Vol. 36, (1980), p.464. -468.

Google Scholar

[3] Lanford W. A., Ding. P. J., Wang W., Hymes S., Murarka S. P. Alloying of copper for use in microelectronic metallization. Mater. Chem. Phys., 1995, 41 (3): 192-198.

DOI: 10.1016/0254-0584(95)01513-2

Google Scholar

[4] Hu C. -K., Rodbell K. P., Sullivan T. D., Lee K. Y., Bouldin D. P., Electro-migration and stress induced voiding in fine AI and AI-alloy thin-film lines. IBM J. RES. DEVELOP, 1995, 39 (4): 465-497.

DOI: 10.1147/rd.394.0465

Google Scholar

[5] Attardo M. J., Rosenberg R. Electro-migration damage in Aluminum film conductors. J. Appl. Phys., 1970, 41 (6): 2381-2386.

DOI: 10.1063/1.1659233

Google Scholar

[6] Gangulee A, D'heurle F. M. H. F. M. Effects of alloy additions on electro-migration failure in thin Al films. Appl. Phys. Lett., 1971, 19 (3): 76-77.

Google Scholar

[7] Blatt F. J. Physics of electronic conduction in solids. McGraw-Hill, New York, (1968).

Google Scholar

[8] Yousuke Koike, Inase T., Takayama S. J. Temperature Dependence of Internal Stress and Crystal Growth of Dilute Cu Alloy Films. Solid State Phenomena, 2007, 127: 147-152.

DOI: 10.4028/www.scientific.net/ssp.127.147

Google Scholar

[9] Y. K. Ko, Jang. H. J., Lee S., Yang H. J., Lee W. H., Reucroft P. J., Lee J. G., Effects of molybdenum, silver dopants and a titanium substrate layer on copper film metallization. J. Mater. Sci. 2003, 38: 217-222.

Google Scholar

[10] Gungor A., Barmak K., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W) allow thin films. J. Vac. Sci. Techno. B: Microelectronics and Nanometer Structures, 2002, 20 (6): 2314-2319.

DOI: 10.1116/1.1520549

Google Scholar

[11] Barmak K., Cabral Jr C., K. P. Rodbell, Harper J. M. E. On the use of alloying elements for Cu interconnect applications. J. Vac. Sci. Technol., 2006, B(24): 2485-2498.

DOI: 10.1116/1.2357744

Google Scholar

[12] J. Iijima, M. Haneda, J. Koike, Growth Behavior of Self-Formed Barrier Using Cu-Mn Alloys at 350 to 600 °C, IEEE. 6(2006) 155-157.

DOI: 10.1109/iitc.2006.1648675

Google Scholar