Performance Improvement of Phase Change Memory Cell by Using a Tantalum Pentoxide Buffer Layer

Article Preview

Abstract:

The performance of phase change memory (PCM) cell, based on Ti0.5Sb2Te3, was significantly improved by using a tantalum dioxide buffer layer. The presence of a buffer layer reduced the reset voltage of the PCM cell. The theoretical thermal simulation and calculation for the reset process were conducted to analyze the thermal effect of the titanium dioxide heating layer. The improved performance of the PCM cell with dioxide clad layer can be attributed to the fact that the buffer layer not only acted as heating layer but also efficiently reduced the cell dissipated power.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

425-429

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wuttig M, Yamada N. Nature Mater, 6( 2007) 824.

Google Scholar

[2] Raoux S, Wełnic W, Ielmini D. Chem Rev, 110( 2010) 240.

Google Scholar

[3] Burr GW, Breitwisch MJ, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, et al. J Vac Sci Technol B , 28(2010) 223.

Google Scholar

[4] Atwood G. Science, 321( 2008) 210.

Google Scholar

[5] Loke D, Lee TH, Wang WJ, Shi LP, Zhao R, Yeo YC, et al. Science, 336(2012) 1566.

Google Scholar

[6] Grosse KL, Xiong F, Hong S, King WP, Pop E. Appl Phys Lett, 102(2013) 193503.

Google Scholar

[7] Zhang ZH, Song SN, Song ZT, Cheng Y, Gu YF, Chen B. Appl Phys Lett, 102( 2013) 252103.

Google Scholar

[8] Gu YF, Song SN, Song ZT, Bai SY, Cheng Y, Zhang ZH, et al. Appl Phys Lett, 102( 2013) 103110.

Google Scholar

[9] Ahn JK, Park KW, Jung HJ, Yoon SG. Nano Lett, 10( 2010) 472.

Google Scholar

[10] Matsunaga T, Akola J, Kohara S, Honma T, Kobayashi K, Ikenaga E, et al. Nat Mater, 10( 2011) 129.

Google Scholar

[11] Cheng HY, Raoux S, Jordan-Sweet JL. Appl Phys Lett , 98(2011) 121911.

Google Scholar

[12] Zhu M, Wu LC, Rao F, Song ZT, Ren K, Ji XL, et al. Appl Phys Lett , 104(2014) 053119.

Google Scholar

[13] Ren WC, Jing XZ, Xiang YH, Xiao HB, Zhang BC, Liu B, et al. ECS Transactions , 52(2013) 461.

Google Scholar

[14] Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, Yagi T, et al. Nature Nanotech, 6( 2011) 501.

DOI: 10.1038/nnano.2011.96

Google Scholar

[15] Rao F, Song ZT, Gong YF, Wu LC, Liu B, Feng SL, et al. Appl Phys Lett, 92( 2008) 223507.

Google Scholar

[16] Sadeghipour SM, Pileggi L, Asheghi M. The Tenth Intersociety Conference on ITHERM (IEEE, New York, 2006) p.660–665.

Google Scholar

[17] Song SN, Song ZT, Peng C, Gao LN, Gu YF, Zhang ZH, et al. Nanoscale Res Lett , 8(2013) 1.

Google Scholar

[18] Matsui Y, Kurotsuchi K, Tonomura O, Morikawa T, Kinoshita M, Fujisaki Y, et al. Electron Devices Meeting 2006. IEDM '06. International, ( 2006) 1-4.

Google Scholar

[19] Shang F, Zhai JW, Song SN, Song ZT, Wang CZ. Appl Phys Lett, 96(2010) 203504.

Google Scholar

[20] Gu YF, Song SN, Song ZT, Bai SY, Cheng Y, Zhang ZH, et al. Appl Phys Lett, 102(2013) 103110.

Google Scholar

[21] Russo U, Ielmini D, Redaelli A, Lacaita AL. IEEE Trans Electron Devices, 55(2008) 506.

Google Scholar

[22] Pirovano A, Lacaita AL, Benvenuti A, Pellizzer F, Hudgens S, Bez R. Tech Dig-Int Electron Devices Meet, (2003) 699.

DOI: 10.1109/iedm.2003.1269376

Google Scholar

[23] Rao F, Song ZT, Wu LC, Zhong M, Feng SL, Chen B. Appl Phys Lett, 91 (2007) 073505.

Google Scholar