Optical Characteristic and Application of CH3NH3PbI3 Thin Film in Schottky Diode

Article Preview

Abstract:

CH3NH3PbI3 thin film was deposited by a dual-source evaporation system under high vacuum (∼10−4 Pa). The crystallographic phase was analyzed by X-ray diffraction and confirmed as the perovskite structure. The optical properties of the thin film have been investigated in the spectral range 300-1800 nm. The analysis of the absorption coefficient () reveals direct allowed transition with corresponding energy 1.58 eV. The surface morphology of the film was characterized by atomic force microscopy (AFM). The observed features exhibited by CH3NH3PbI3 give a vital chance to explore its application for various optoelectronic devices. To see its other potential utility, Al/CH3NH3PbI3 /ITO Schottky diodes were fabricated. Based on the analyzing the I-V measurement for the Al/CH3NH3PbI3/ ITO device, the basic device parameters such as barrier height and ideality factor were determined. At the low-voltage region, the current conduction in the device is ohmic type. The charge transport phenomenon appears to be space charge limited current (SCLC) at higher-voltage regions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

440-445

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Im J H, Lee C R, Lee J W, et al. 6. 5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3(2011) 4088–4093.

DOI: 10.1039/c1nr10867k

Google Scholar

[2] Wojciechowski K, Saliba M, Leijtens T, et al. Sub 150°C processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ Sci, 2014, 1142–1147.

DOI: 10.1039/c3ee43707h

Google Scholar

[3] Service R F. Perovskite solar cells keep on surging, Science, 344(2014) 458.

Google Scholar

[4] Kagan C R, Mitzi D B, Dimitrakopoulos C D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science, 286(1999) 945–947.

DOI: 10.1126/science.286.5441.945

Google Scholar

[5] Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat Photonics, 7(2013) 486–491.

DOI: 10.1038/nphoton.2013.80

Google Scholar

[6] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite, Nature nanotechnology, 9(2014) 687-692.

DOI: 10.1038/nnano.2014.149

Google Scholar

[7] Peumans P, Yakimov A, and Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93(2003) 3693-3723.

DOI: 10.1063/1.1534621

Google Scholar

[8] X. H. Zhu, B. J. Zhao, S. F. Zhu, Y. R. Jin, Z. Y. He, J. J. Zhang and Y. Huang. Synthesis and characterization of PbI2 polycrystals. Cryst, Res. Technol. 41(2006) 239 – 242.

DOI: 10.1002/crat.200510567

Google Scholar

[9] Farag A A M, Haggag S M S and Mahmoud M E, Spectral–optical–electrical–thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5, 7-dinitroquinolate complex, Spectrochim. Acta A. 82(2011) 467.

DOI: 10.1016/j.saa.2011.07.079

Google Scholar

[10] Farag A A M and Yahia I S, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique, Opt. Commun. 283(2010) 4310.

DOI: 10.1016/j.optcom.2010.06.081

Google Scholar

[11] Nahass M M E, Farag A M, Rahman K F A E and Darwish A A A, Dispersion studies and electronic transitions in nickel phthalocyanine thin films, Opt. Laser Technol. 37(2005) 513-523.

DOI: 10.1016/j.optlastec.2004.08.016

Google Scholar

[12] Agilan S, Mangalaraj D, Narayandass S K, Velumani S and Ignatiev A, Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method, Vacuum. 81(2007) 813-818.

DOI: 10.1016/j.vacuum.2006.08.002

Google Scholar

[13] Tugluoglu N, Barıs B, Gurel H, Karadeniz S and Yuksel O F, Investigation of optical band gap and device parameters of rubrene thin film prepared using spin coating technique, Journal of Alloys and Compounds 582(2014) 696-702.

DOI: 10.1016/j.jallcom.2013.08.067

Google Scholar

[14] E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Claredon, Oxford, 1988).

Google Scholar

[15] Gullu O, Turut A and Asubay S, J. Phys.: Condens. Matter 20(2008) 045215.

Google Scholar

[16] A. R. Vearey-Roberts and D. A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers, Appl. Phys. Lett., 86(2005) 072105.

DOI: 10.1063/1.1864255

Google Scholar

[17] J.A. Banday, F.A. Mir, H.A. Kanth, G.M. Bhat, Structural and optical properties of Heraclenin: A bio-organic molecule from Prangos Pabularia, Optik - International Journal for Light and Electron Optics, Optik, 124(2013) 4655-4658.

DOI: 10.1016/j.ijleo.2013.01.114

Google Scholar

[18] D. Ray, P.K. Bharadwaj, A coumarin-derived fluorescence probe selective for magnesium, Inorg. Chem. 47(2008) 2252-2254.

DOI: 10.1021/ic702388z

Google Scholar

[19] Mir, Feroz A.; u Rehman, Shakeel; Mir, Tawfeeq A.; Asokan, K.; Khan, S. H., Structural, optical and transport properties of 4-hydroxycoumarin: an organic Schottky diode, Appl. Phys. A, 116(2014) 1017-1023.

DOI: 10.1007/s00339-014-8307-5

Google Scholar