[1]
Im J H, Lee C R, Lee J W, et al. 6. 5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3(2011) 4088–4093.
DOI: 10.1039/c1nr10867k
Google Scholar
[2]
Wojciechowski K, Saliba M, Leijtens T, et al. Sub 150°C processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ Sci, 2014, 1142–1147.
DOI: 10.1039/c3ee43707h
Google Scholar
[3]
Service R F. Perovskite solar cells keep on surging, Science, 344(2014) 458.
Google Scholar
[4]
Kagan C R, Mitzi D B, Dimitrakopoulos C D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science, 286(1999) 945–947.
DOI: 10.1126/science.286.5441.945
Google Scholar
[5]
Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat Photonics, 7(2013) 486–491.
DOI: 10.1038/nphoton.2013.80
Google Scholar
[6]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite, Nature nanotechnology, 9(2014) 687-692.
DOI: 10.1038/nnano.2014.149
Google Scholar
[7]
Peumans P, Yakimov A, and Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93(2003) 3693-3723.
DOI: 10.1063/1.1534621
Google Scholar
[8]
X. H. Zhu, B. J. Zhao, S. F. Zhu, Y. R. Jin, Z. Y. He, J. J. Zhang and Y. Huang. Synthesis and characterization of PbI2 polycrystals. Cryst, Res. Technol. 41(2006) 239 – 242.
DOI: 10.1002/crat.200510567
Google Scholar
[9]
Farag A A M, Haggag S M S and Mahmoud M E, Spectral–optical–electrical–thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5, 7-dinitroquinolate complex, Spectrochim. Acta A. 82(2011) 467.
DOI: 10.1016/j.saa.2011.07.079
Google Scholar
[10]
Farag A A M and Yahia I S, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique, Opt. Commun. 283(2010) 4310.
DOI: 10.1016/j.optcom.2010.06.081
Google Scholar
[11]
Nahass M M E, Farag A M, Rahman K F A E and Darwish A A A, Dispersion studies and electronic transitions in nickel phthalocyanine thin films, Opt. Laser Technol. 37(2005) 513-523.
DOI: 10.1016/j.optlastec.2004.08.016
Google Scholar
[12]
Agilan S, Mangalaraj D, Narayandass S K, Velumani S and Ignatiev A, Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method, Vacuum. 81(2007) 813-818.
DOI: 10.1016/j.vacuum.2006.08.002
Google Scholar
[13]
Tugluoglu N, Barıs B, Gurel H, Karadeniz S and Yuksel O F, Investigation of optical band gap and device parameters of rubrene thin film prepared using spin coating technique, Journal of Alloys and Compounds 582(2014) 696-702.
DOI: 10.1016/j.jallcom.2013.08.067
Google Scholar
[14]
E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Claredon, Oxford, 1988).
Google Scholar
[15]
Gullu O, Turut A and Asubay S, J. Phys.: Condens. Matter 20(2008) 045215.
Google Scholar
[16]
A. R. Vearey-Roberts and D. A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers, Appl. Phys. Lett., 86(2005) 072105.
DOI: 10.1063/1.1864255
Google Scholar
[17]
J.A. Banday, F.A. Mir, H.A. Kanth, G.M. Bhat, Structural and optical properties of Heraclenin: A bio-organic molecule from Prangos Pabularia, Optik - International Journal for Light and Electron Optics, Optik, 124(2013) 4655-4658.
DOI: 10.1016/j.ijleo.2013.01.114
Google Scholar
[18]
D. Ray, P.K. Bharadwaj, A coumarin-derived fluorescence probe selective for magnesium, Inorg. Chem. 47(2008) 2252-2254.
DOI: 10.1021/ic702388z
Google Scholar
[19]
Mir, Feroz A.; u Rehman, Shakeel; Mir, Tawfeeq A.; Asokan, K.; Khan, S. H., Structural, optical and transport properties of 4-hydroxycoumarin: an organic Schottky diode, Appl. Phys. A, 116(2014) 1017-1023.
DOI: 10.1007/s00339-014-8307-5
Google Scholar