Investigation of Ni Doped Ge-Te Materials for High Temperature Phase Change Memory Applications

Article Preview

Abstract:

Ni-doped Ge-Te (Ni-GT) material was proposed and investigated for phase change random access memory (PCRAM) applications. With Ni addition, the crystallization temperature, data retention ability and crystallization speed were obviously improved. The surface roughness of crystalline Ni-GT films was decreased by Ni incorporation. Moreover, temperature dependent transmission electron microscopy (TEM) was applied to investigate the phase change behavior of Ni-GT films. All the experimental results demonstrated that Ni-GT material has potential for high-speed PCRAM applications in high temperature environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

460-465

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. R. Lankhorst, B. W. S. M. M. Ketelaars and R. A. M. Wolters, Nat. Mater. 4, 347 (2005).

Google Scholar

[2] http: /www. itrs. net/Links/2009ITRS/Home2009. html, International Technology Roadmap for Semiconductors (ITRS), (2009).

Google Scholar

[3] D. Lencer, M. Salinga, M. Wuttig, Design rules for phase-change materials in data storage applications, Adv. Mater. 23, 2030 (2011).

DOI: 10.1002/adma.201004255

Google Scholar

[4] Xinglong Ji, Liangcai Wu, Wangyang Zhou, Min Zhu, Feng Rao, Zhitang Song, Liangliang Cao, and Songlin Feng, Appl. Phys. Lett., 106, 023118 (2015).

Google Scholar

[5] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishna, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, S. Raoux, and R. S. Shenoy, J. Vac. SCI. Technol. B 28(2), 223 (2010).

DOI: 10.1116/1.3301579

Google Scholar

[6] Min Zhu, Liangcai Wu, Zhitang Song, Feng Rao, Daolin Cai, Cheng Peng, Xilin Zhou, Kun Ren, Sannian Song, Bo liu, and Songlin Feng, Appl. Phys. Lett. 100, 122101 (2012).

Google Scholar

[7] K. Wang, C. Steimer, D. Wamwangi, S. Ziegler,M. Wuttig, Appl. Phys. A. 80, 1611 (2005).

Google Scholar

[8] Xilin Zhou, Liangcai Wu, Zhitang Song, Feng Rao, Min Zhu, Cheng Peng, Sannian Song, Bo Liu, and Songlin Feng, Appl. Phys. Lett. 101, 142104 (2012).

Google Scholar

[9] A. Fantini, L. Perniola, M. Armand et al., in Proc. Int. Memory Workshop, 2009, p.66–67.

Google Scholar

[10] G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, and J. B. hilipp, and M. Kund, Appl. Phys. Lett. 95, 043108 (2009).

DOI: 10.1063/1.3191670

Google Scholar

[11] D. S. G. Sanjeev, M. G. Mahesha, Appl. Phys. A. 119, 49 (2015).

Google Scholar

[12] S. Raoux, H. Y. Cheng, M. A. Caldwell, and H. S. P. Wong, Appl. Phys. Lett. 95, 071910(2009).

Google Scholar

[13] N. Yan, X.Q. Liu, L. Zhang, Z. Zhang, X.D. Han, Chem. Phys. Lett. 556, 108 (2013).

Google Scholar

[14] Kun Ren, Feng Rao, Zhitang Song, Cheng Peng, Juntao Li, Liangcai Wu, Bo Liu, and Songlin Feng, Appl. Phys. Lett. 102, 174105(2013).

Google Scholar

[15] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran, M. Asheghi, and K. Goodson, Proc. IEEE 98, 2201 (2010).

DOI: 10.1109/jproc.2010.2070050

Google Scholar

[16] Dong-Hee Shin, Min-Jung Song, Jin-Wook Kim, Gyu-Hyun Kim, Kwon Hong, and Dae-Soon Lim, Jan. J. Appl. Phys. 53, 031402 (2014).

Google Scholar

[17] Yegang Lu, Sannian Song, Zhitang Song, Wanchun Ren, Cheng Peng, Yan Cheng, Bo Liu, Solid State Sci. 13, 1943 (2011).

Google Scholar