[1]
G. Li, L. Li, Facile synthesis and luminescent properties of LaPO4: Eu3+, Sm3+nanorods via a designed two-step hydrothermal method, Mater. Chem. Phys. 13(2012) 263-268.
DOI: 10.1016/j.matchemphys.2012.01.020
Google Scholar
[2]
D.M. Pimpalshende, S.J. Dhoble, Synthesis and luminescent performance of LaPO4: Dy nanophosphor, Adv. Mater. Lett. 5(2014) 688-691.
DOI: 10.5185/amlett.2014.amwc472
Google Scholar
[3]
S.H. Yang, J.H. Yan, C.K. Yang, C.M. Lin, Luminescence of CNT coated LaPO4: Tm phosphors and their field emission lamp application, J. Alloys. Compd. 612 (2014) 210-214.
DOI: 10.1016/j.jallcom.2014.05.185
Google Scholar
[4]
Y.P. Fang, A.W. Xu, R.Q. Song, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires, J. Amer. Chem. Soc. 125(2003) 16025-16034.
DOI: 10.1021/ja037280d
Google Scholar
[5]
N.P. Shaik, N. Rao, K. Murthy, Synthesis and photoluminescent properties of LaPO4: Ga3+ phosphor, Arch. Pharmacal Res. 5(2014) 45-49.
Google Scholar
[6]
T.S. Malyy, V.V. Vistovskyy, Z.A. Khapko, Voloshinovskii, Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles, J. Appl. Phys. 113(2013) 224305.
DOI: 10.1063/1.4808797
Google Scholar
[7]
J.A. Dorman, J.H. Choi, G. Kuzmanich, High-quality white light using core-shell RE3+: LaPO4 (RE= Eu, Tb, Dy, Ce) phosphors, J. Phys. Chem. C. 116(2012) 12854-12860.
DOI: 10.1021/jp300858z
Google Scholar
[8]
S.H. Lee, J.I. Choi, Comparison of luminescent properties of Y2O3: Eu3+ and LaPO4: Ce3+, Tb3+ phosphors prepared by various synthetic methods, Mater. Charact. 103(2015) 162-169.
DOI: 10.1016/j.matchar.2015.03.027
Google Scholar
[9]
M.G. Ma, F. Deng, K. Yao, Solvothermal synthesis and characterization of LaPO4 with hierarchical nanostructure in mixed solvents of ethanol and water, Mater. Lett. 124(2014) 173-176.
DOI: 10.1016/j.matlet.2014.03.092
Google Scholar
[10]
A.A. Bagatur'yants, I.M. Iskandarova, A.A. Knizhnik, Energy level structure of 4f-5d states and the Stokes shift in LaPO4: Pr3+: a theoretical study, Phys. Rev. B. 78(2008) 165125.
Google Scholar
[11]
T. Grzyb, M. Runowski, A. Szczeszak, S. Lis, Influence of matrix on the luminescent and structural properties of glycerine-capped, Tb3+-doped fluoride nanocrystals, J. Phys. Chem. C. 116(2012) 17188-17196.
DOI: 10.1021/jp3010579
Google Scholar
[12]
T. Grzyb, A. Gruszeczka, R.J. Wiglusz, S. Lis, The effects of down- and up-conversion on dual-mode green luminescence from Yb3+- and Tb3+-doped LaPO4 nanocrystals, J. Mater. Chem. C. 34(2013) 5410-5418.
DOI: 10.1039/c3tc31100g
Google Scholar
[13]
Y. Tian, B.J. Chen, R.N. Hua, Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3: Eu3+ phosphor, J. Appl. Phys. 109(2011) 053511.
Google Scholar
[14]
K.C. Anjaneya, G.P. Nayaka, J. Manjanna, Studies on structural, morphological and electrical properties of Ce0. 8Ln0. 2O2-x(Ln= Y3+, Gd3+, Sm3+, Nd3+ and La3+) solid solutions prepared by citrate complexation method, J. Alloys. Compd. 585(2014).
DOI: 10.1016/j.jallcom.2013.09.101
Google Scholar
[15]
J. Feng, B. Xiao, R. Zhou, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE= La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater. 61(2013) 7364-7383.
DOI: 10.1016/j.actamat.2013.08.043
Google Scholar
[16]
R. Lv, G. Yang, S. Gai, Y. Dai, F. He, P. Yang, Multifunctional LaPO4: Ce/Tb@Au mesoporous microspheres: synthesis, luminescence and controllable light triggered drug release, Rsc. Adv. 4(2014) 63425-63435.
DOI: 10.1039/c4ra12942c
Google Scholar
[17]
L.X. Yu, H. Song, S. Lu, Z. Liu, L. Yang, T. Wang, X. Kong, Thermal quenching characteristics in LaPO4 : Eu nanoparticles and nanowires, Mater. Res. Bull. 39(2004) 2083-(2088).
DOI: 10.1016/j.materresbull.2004.07.007
Google Scholar
[18]
Z. Wei, L. Sun, C. Liao, J. Yin, X. Jiang, C. Yan, S. Lü, Size-dependent chromaticity in YBO3: Eu nanocrystals: correlation with microstructure and site symmetry, J. Phys. Chem. B. 106(2002) 10610-10617.
DOI: 10.1021/jp025967z
Google Scholar
[19]
S. Abtmeyer, R. Pązik, R.J. Wiglusz, Lanthanum molybdate nanoparticles from the bradley reaction: factors influencing their composition, structure, and functional characteristics as potential matrixes for luminescent phosphors, Inorg. Chem. 53(2014).
DOI: 10.1021/ic4023486
Google Scholar
[20]
G. Phaomei, W. Rameshwor, R.S. Ningthoujam, Solvent effect in monoclinic to hexagonal phase transformation in LaPO4: RE (RE= Dy3+, Sm3+) nanoparticles: Photoluminescence study, J. Lumin. 131(2011) 1164-1171.
DOI: 10.1016/j.jlumin.2011.02.023
Google Scholar
[21]
K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln= Eu, Sm, Dy), J. Phys. Chem. B. 102(1998) 10129-10135.
DOI: 10.1021/jp982293c
Google Scholar