Self-Precipitated Process of Te Nanowire from Zr-Doped Sb2Te3 Film

Article Preview

Abstract:

By using Zr6.5(Sb2Te3)93.5 film, Te nanowires with a diameter of 5 to 30 nm were fabricated through annealing process. The results of the bright field TEM images, selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM) demonstrated that the nanowire fitted well with Te hexagonal Te (P3121) structure. The EDS mapping implies that Zr element bonded with Te element and induced the formation of single crystalline Te nanowire during the annealing process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

489-493

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.M. Goncalves, P. Alpuim, A.G. Rolo, J.H. Correia, Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications, Thin Solid Films. 519 (2011) 4152-4157.

DOI: 10.1016/j.tsf.2011.01.395

Google Scholar

[2] N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials & Solar Cells. 58 (1999) 209-218.

DOI: 10.1016/s0927-0248(98)00204-9

Google Scholar

[3] S.B. Hu, Z. Zhu, W. Li, L.H. Feng, J.Q. Zhang, L.L. Wu, Band diagram construction of CdTe/Sb2Te3 interface using synchrotron radiation, Solar Energy Materials & Solar Cells. 134 (2015) 329-333.

DOI: 10.1016/j.solmat.2014.10.050

Google Scholar

[4] A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Understanding the phase-change mechanism of rewritable optical media, Nature Materials. 3 (2004) 703-708.

DOI: 10.1038/nmat1215

Google Scholar

[5] H.J. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Physics 5 (2009) 438-442.

DOI: 10.1038/nphys1270

Google Scholar

[6] K.B. Tang, Y.T. Qian, J.H. Zeng, X.G. Yang, Solvothermal route to semiconductor nanowires, Advanced Materials. 15 (2003) 448-450.

DOI: 10.1002/adma.200390104

Google Scholar

[7] S. Kan, T. Mokari, E. Rothenberg, U. Banin, Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods, Nature Materials. 2 (2003) 155-158.

DOI: 10.1038/nmat830

Google Scholar

[8] X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Chemically derived, Ultra-smooth graphene nanoribbon semiconductors, Science. 319 (2009) 1229-1232.

DOI: 10.1126/science.1150878

Google Scholar

[9] J.G. Yu, J.C. Yu, W.K. Ho, L. Mu, X.C. Cheng, Simple and general method for the synthesis of multicomponent Na2V6O16·3H2O single-crystal nanobelts, Journal of the American Chemical Society. 126 (2004) 3422-3423.

DOI: 10.1021/ja031795n

Google Scholar

[10] Y.N. Xia, P.D. Y, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials 15 (2003) 353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[11] H.Y. Chen, H.L. Lu, Y.G. Nie, J.H. Zhang, M.Z. Zhang, Q.Q. Dai, The fabrication of Te nanowires with different orientations by vacuum vapor deposition, Physics Letters A. 362 (2007) 61–65.

DOI: 10.1016/j.physleta.2006.09.088

Google Scholar

[12] G.S. Cao, C.W. Dong, L. Wang, Z.S. Liu, Selected-control synthesis of Te nanowires and Te/C nanocables by adjusting hydrothermal temperature, Materials Letters. 63 (2009) 1778-1780.

DOI: 10.1016/j.matlet.2009.05.035

Google Scholar

[13] A.W. Zhao, C.H. Ye, G.W. Meng, L.D. Zhang, P.M. Ajayan, Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition, Journal of Materials Research. 18 (2003) 2318-2322.

DOI: 10.1557/jmr.2003.0325

Google Scholar