Effect of Doping Concentrations on Properties of Ga-Ti Co-Doped ZnO (GTZO) Targets

Article Preview

Abstract:

Ti-Ga co-doped ZnO (GTZO) ceramic targets were prepared by sintering in air at l300°C for 3 h. The morphologies, structure, densification behavior, mechanical and electrical properties of the sintered ceramic targets with different doping concentration were investigated. The optimal doping concentration was obtained. The results indicated that the sintered GTZO targets with total co-doping amount of 2wt% (1wt% Ga2O3 and 1wt% TiO2) had the best properties combination, which was corresponding to an electrical resistivity of 1.56×10-3Ω·cm, a relative density of 99%, a Vickers hardness of 378MPa and a bending strength of 99.4 MPa. The sintered targets were then used to deposit GTZO thin film by pulsed laser deposition. The electrical resistivity of the GTZO thin film achieved 3.78×10-3 Ω·cm, and the optical transmittance was above 85% in the visible light region. This kind of GTZO ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with good optical and electrical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

498-504

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented al-doped ZnO films, J Cryst Growth, 287 (2006) 78-84.

DOI: 10.1016/j.jcrysgro.2005.10.047

Google Scholar

[2] S. Benramache, B. Benhaoua, O. Belahssen, The crystalline structure, conductivity and optical properties of Co-doped ZnO thin films, Optik, 125 (2014) 5864-5868.

DOI: 10.1016/j.ijleo.2014.07.055

Google Scholar

[3] M. Kodu, T. Arroval, T. Avarmaa, R. Jaaniso, I. Kink, S. Leinberg, K. Savi, M. Timusk, Effect of oxygen on active Al concentration in ZnO: Al thin films made by PLD, Appl Surf Sci, 320 (2014) 756-763.

DOI: 10.1016/j.apsusc.2014.08.138

Google Scholar

[4] M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jayaraj, Effect of substrate temperature on the growth of ITO thin films, Appl Surf Sci, 252 (2005) 1430-1435.

DOI: 10.1016/j.apsusc.2005.02.115

Google Scholar

[5] D.H. Lee, K.H. Park, S. Kim, S.Y. Lee, Effect of Ag doping on the performance of ZnO thin film transistor, Thin Solid Films, 520 (2011) 1160-1164.

DOI: 10.1016/j.tsf.2011.04.064

Google Scholar

[6] J.M. Lin, Y.Z. Zhang, Z.Z. Ye, X.Q. Gu, X.H. Pan, Y.F. Yang, J.G. Lu, H.P. He, B.H. Zhao, Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition, Appl Surf Sci, 255 (2009) 6460-6463.

DOI: 10.1016/j.apsusc.2009.01.002

Google Scholar

[7] R.S. Wu, W.J. Zhang, H. Zhang, D.Y. Song, Q. Ma, J. Liu, X.B. Ma, L. Zhang, L. Zhang, H.Y. Song, Investigation of aluminum and gallium co-doped ZnO powders and their effects on the properties of targets, Mat Sci Semicon Proc, 19 (2014) 24-31.

DOI: 10.1016/j.mssp.2013.11.034

Google Scholar

[8] J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, H.H. Chun, Low resistivity of Ni-Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power, Appl Surf Sci, 293 (2014) 55-61.

DOI: 10.1016/j.apsusc.2013.12.071

Google Scholar

[9] C.Y. Tsay, W.T. Hsu, Sol-gel derived undoped and boron-doped ZnO semiconductor thin films: Preparation and characterization, Ceram Int, 39 (2013) 7425-7432.

DOI: 10.1016/j.ceramint.2013.02.086

Google Scholar

[10] C.E. Benouis, M. Benhaliliba, A.S. Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films, J Alloy Compd, 490 (2010) 62-67.

DOI: 10.1016/j.jallcom.2009.10.098

Google Scholar

[11] X.M. Wang, X. Bai, H.Y. Duan, Z.X. Shi, J. Sun, S.G. Lu, S.T. Huang, Preparation of Al-doped ZnO sputter target by hot pressing, T Nonferr Metal Soc, 21 (2011) 1550-1556.

DOI: 10.1016/s1003-6326(11)60895-9

Google Scholar

[12] C. Weigand, R. Crisp, C. Ladam, T. Furtak, R. Collins, J. Grepstad, H. Weman, Electrical, optical and structural properties of Al-doped ZnO thin films grown on GaAs(111)B substrates by pulsed laser deposition, Thin Solid Films, 545 (2013).

DOI: 10.1016/j.tsf.2013.07.052

Google Scholar

[13] J. Liu, W.J. Zhang, D.Y. Song, Q. Ma, L. Zhang, H. Zhang, X.B. Ma, H.Y. Song, Gallium-doped zinc oxide targets fabricated by sintering: Impact of target quality on sputtered thin film properties, Mat Sci Semicon Proc, 27 (2014) 1-11.

DOI: 10.1016/j.mssp.2014.06.005

Google Scholar

[14] C.S. Wu, B.T. Lin, R.Y. Yang, Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes, Thin Solid Films, 519 (2011) 5106-5109.

DOI: 10.1016/j.tsf.2011.01.153

Google Scholar

[15] N. Neves, A. Lagoa, J. Calado, A.M.B. do Rego, E. Fortunato, R. Martins, I. Ferreira, Al-doped ZnO nanostructured powders by emulsion detonation synthesis - Improving materials for high quality sputtering targets manufacturing, J Eur Ceram Soc, 34 (2014).

DOI: 10.1016/j.jeurceramsoc.2014.02.019

Google Scholar

[16] S.P. Shrestha, R. Ghimire, J.J. Nakarmi, Y.S. Kim, S. Shrestha, C.Y. Park, J.H. Boo, Properties of ZnO: Al Films Prepared by Spin Coating of Aged Precursor Solution, B Korean Chem Soc, 31 (2010) 112-115.

DOI: 10.5012/bkcs.2010.31.01.112

Google Scholar

[17] N. Neves, R. Barros, E. Antunes, J. Calado, E. Fortunato, R. Martins, I. Ferreira, Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application, J Eur Ceram Soc, 32 (2012) 4381-4391.

DOI: 10.1016/j.jeurceramsoc.2012.08.007

Google Scholar