[1]
S. M. Sze, Physics of semiconductor devices, second ed., Wiley, New York, (1981).
Google Scholar
[2]
B. G. Streetman, S. Banerjee, Solid State Electronic Devices, fifth ed., Prentice Hall, New Jersey, (2000).
Google Scholar
[3]
Ali. Serpengüzel, A. Kurt and U. K. Ayaz, Silicon microspheres for electronic and photonic integration, Photonics and Nanostructures-Fundamentals and Applications 6(2008)179-182.
DOI: 10.1016/j.photonics.2008.08.005
Google Scholar
[4]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, Two-dimensional photonic band-gap defect mode laser, Science. 284(1999)1819-1821.
DOI: 10.1126/science.284.5421.1819
Google Scholar
[5]
A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, Large scale synthesis of a silicon photonic crystal with a complete three dimensional bandgap near 1. 5 micrometers, Nature. 405(2000)437-440.
DOI: 10.1038/35013024
Google Scholar
[6]
B. S. Song, S. Noda and T. Asano, Photonic devices based on in-plane hetero photonic crystals, Science. 300 (2003)1537-1537.
DOI: 10.1126/science.1083066
Google Scholar
[7]
A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering, Optics Express. 12(2004) 4261-4268.
DOI: 10.1364/opex.12.004261
Google Scholar
[8]
H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide, Applied Physics Letters. 85 (2004)2196-2198.
DOI: 10.1063/1.1794862
Google Scholar
[9]
R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering, Optics Express. 13 (2005) 19-25.
DOI: 10.1364/opex.13.000519
Google Scholar
[10]
J. Song, Y. Li, X. Zhou, X. Li, Planar grating multiplexers using silicon nanowire technology: numerical simulations and fabrications, Progress in Electromagnetics Research. 123 (2012) 509-526.
DOI: 10.2528/pier11110402
Google Scholar
[11]
H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, A continuous-wave Raman silicon laser, Nature. 433 (2005) 725-728.
DOI: 10.1038/nature03346
Google Scholar
[12]
K. J. Vahala, Optical microcavities, Nature. 424 (2003) 839-846.
Google Scholar
[13]
T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, Y. Hamakawa, Fabrication of spherical silicon solar cells with semi-light-concentration system, Japanese Journal of Applied Physics. 44(2005)4820-4824.
DOI: 10.1143/jjap.44.4820
Google Scholar
[14]
T. Minemoto, H. Takakura, Fabrication of spherical silicon crystals by dropping method and their application to solar cells, Japanese Journal of Applied Physics. 46(2007) 4016-4020.
DOI: 10.1143/jjap.46.4016
Google Scholar
[15]
T. Ikuta, T. Minemoto, H. Takakura, Y. Hamakawa, Optical design of spherical silicon solar cells with reflector cup, Japanese Journal of Applied Physics. 45 (2006) 3938-3942.
DOI: 10.1143/jjap.45.3938
Google Scholar
[16]
S. Omae, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Crystal characterization of spherical silicon solar cell by X-ray diffraction, Japanese Journal of Applied Physics. 45 (2006) 3933-3937.
DOI: 10.1143/jjap.45.3933
Google Scholar
[17]
H. C. Tapalian, J. P. Laine, P. A. Lane, Thermooptical switches using coated microsphere resonators, IEEE Photonics Technology Letters. 14 (2002) 1118-1120.
DOI: 10.1109/lpt.2002.1021988
Google Scholar
[18]
I. Teraoka, S. Arnold, and F. Vollmer, Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium, Journal of the Optical Society of America B. 20 (2003)1937-(1946).
DOI: 10.1364/josab.20.001937
Google Scholar
[19]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, Optical gyroscope with whispering gallery mode optical cavities, Optics Communications. 233 (2004) 107-112.
DOI: 10.1016/j.optcom.2004.01.035
Google Scholar
[20]
Y. O. Yilmaz, A. Demir, A. Kurt, A. Serpenguzel, Optical channel dropping with a silicon microsphere, IEEE Photonics Technology Letters. 17 (2005) 1662-1664.
DOI: 10.1109/lpt.2005.850896
Google Scholar
[21]
M. Lu, H. Zhang, Controllable synthesis of spherical silicon and its performance as an anode for lithium-ion batteries, Ionics. 19 (2013) 1695-1698.
DOI: 10.1007/s11581-013-1006-y
Google Scholar
[22]
J. Xie, G. Wang, Y. Huo, S. Zhang, G. Cao, X. Zhao, Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries, Electrochimica Acta. 135 (2014) 94-100.
DOI: 10.1016/j.electacta.2014.05.012
Google Scholar
[23]
S. Omae, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Crystal growth mechanism of spherical silicon fabricated by dropping method, Japanese Journal of Applied Physics. 45(2006)3577-3580.
DOI: 10.1143/jjap.45.3577
Google Scholar
[24]
R. Körmer, M. Jank, H. Ryssel, H. J. Schmid, W. Peukert, Aerosol synthesis of silicon nanoparticles with narrow size distribution-part 1: Experimental investigations, Journal of Aerosol Science. 41 (2010) 998-1007.
DOI: 10.1016/j.jaerosci.2010.05.007
Google Scholar
[25]
R. Fenollosa, F. Meseguer, M. Tymczenko, Silicon colloids: from micro-cavities to photonic sponges, Advanced Materials. 20 (2008) 95-98.
DOI: 10.1002/adma.200701589
Google Scholar
[26]
L. E. Pell, A. D. Schricker, F. V. Mikulec, B. A. Korgel, Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents, Langmuir. 20 (2004) 6546-6548.
DOI: 10.1021/la048671o
Google Scholar
[27]
J. Zhu, R. Liu, J. Xu, C. Meng, Preparation and characterization of mesoporous silicon spheres directly from MCM-48 and their response to ammonia, Journal of Materials Science. 46(2011) 7223-7227.
DOI: 10.1007/s10853-011-5680-8
Google Scholar
[28]
S. Omae, C. Okamoto, H. Takakura, Y. Hamakawa, M. Murozono, Crystal structure analysis of spherical silicon using X-Ray pole figures, Solid State Phenom. 93 (2003) 249-256.
DOI: 10.4028/www.scientific.net/ssp.93.249
Google Scholar
[29]
X. Huang, S. Uda, H. Tanabe, N. Kitahara, H. Arimune, K. Hoshikawa, In situ observations of crystal growth of spherical Si single crystals, Journal of Crystal Growth. 307 (2007) 341-347.
DOI: 10.1016/j.jcrysgro.2007.07.005
Google Scholar
[30]
S. Omae, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Crystal evaluation of spherical silicon produced by dropping method and their solar cell performance, Solar Energy Materials & Solar Cells. 90 (2006) 3614-3623.
DOI: 10.1016/j.solmat.2006.06.056
Google Scholar
[31]
Z. Liu, T. Nagai, A. Masuda, M. Kondo, K. Sakai, K. Asai, Seeding method with silicon powder for the formation of silicon spheres in the drop method, Journal of Applied Physics. 101 (2007) 093505(1-5).
DOI: 10.1063/1.2718872
Google Scholar
[32]
C. Okamoto, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Electric and crystallographic characterizations on hydrogen passivated spherical silicon solar cells, Japanese Journal of Applied Physics. Part 1, 44 (2005) 7372-7376.
DOI: 10.1143/jjap.44.7372
Google Scholar
[33]
C. Okamoto, K. Tsujiya, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Reduction in dislocation density of spherical silicon solar cells fabricated by decompression dropping method, Japanese Journal of Applied Physics. Part 1, 44 (2005).
DOI: 10.1143/jjap.44.8351
Google Scholar
[34]
Z. Liu, K. Asai, A. Masuda, T. Nagai, Y. Akashi, M. Murozono, Improvement of the production yield of spherical Si by optimization of the seeding technique in the dropping method, Japanese Journal of Applied Physics. 46(2007) 5695-5700.
DOI: 10.1143/jjap.46.5695
Google Scholar
[35]
Y. Kuzuokaa, S. Isomaeb, and Y. Yamaguchi, Crystal morphology of spherical silicon particles produced by jet-splitting method, Journal of Crystal Growth. 304 (2007) 487-491.
DOI: 10.1016/j.jcrysgro.2007.02.030
Google Scholar
[36]
M. Gharghi, S. Sivoththaman, Growth and structural characterization of spherical silicon crystals grown from polysilicon, Journal of Electronic Materials. 37 (2008) 1657-1664.
DOI: 10.1007/s11664-008-0547-8
Google Scholar
[37]
S. Ueno, H. Kobatake, H. Fukuyama, S. Awaji, H. Nakajima, Formation of silicon hollow spheres via electromagnetic levitation method under static magnetic field in hydrogen–argon mixed gas, Materials Letters. 63(2009) 602-604.
DOI: 10.1016/j.matlet.2008.11.048
Google Scholar
[38]
S. P. Walch, C. E. Dateo, Thermal decomposition pathways and rates for silane, chlorosilane, dichlorosilane and trichlorosilane, Journal of Physical Chemistry. 105 (2001) 2015-(2022).
DOI: 10.1021/jp003559u
Google Scholar
[39]
W. A. P. Claasen, J. Bloem, The nucleation of CVD silicon on SiO2 and Si3N4 substrates, Journal of the Electrochemical Society. 127 (1980) 194-202.
Google Scholar
[40]
W. O. Filtvedt, A. Holt, P. A. Ramachandran, M. C. Melaaen, Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling / scale up of fluidized bed reactors, Solar Energy Materials & Solar Cells. 107(2012) 188-200.
DOI: 10.1016/j.solmat.2012.08.014
Google Scholar
[41]
J. J. Wu, H. V. Nguyen, R. C. Flagan, A method for the synthesis of submicron particles, Langmuir. 3(1987) 266-271.
DOI: 10.1021/la00074a021
Google Scholar
[42]
K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan, L. E. Bm, A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction, The Journal of Physical Chemistry. 97 (1993) 1224-1230.
DOI: 10.1021/j100108a019
Google Scholar
[43]
M. Tao, L. P. Hunt, The thermodynamic behavior of the Si-H system and its role in Si CVD from SiH4, Journal of the Electrochemical Society. 139(1992) 806-809.
DOI: 10.1149/1.2069307
Google Scholar
[44]
M. T. Swihart, S. L. Girshick, Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane, The Journal of Physical Chemistry B. 103(1999) 64-76.
DOI: 10.1021/jp983358e
Google Scholar
[45]
N. K. Serdyuk, V. P. Strunin, E. N. Chesnokov, V. N. Panfilov, Isotope exchange during thermal decomposition of the mixture SiH4 + SiD, Kinetikai Kataliz (Russia). 26(1985) 790-798.
Google Scholar
[46]
R. Becerra, R. Walsh, Some mechanistic problems in the kinetic modeling of monosilane pyrolysis, The Journal of Physical Chemistry. 96 (1992) 10856-10862.
DOI: 10.1021/j100205a047
Google Scholar
[47]
A. A. Onischuk, V. P. Strunin, M. A. Ushakova, V. N. Panfilov, Aerosol particles under silane pyrolysis, Chemical Physics (Russia). 13(1994)129-138.
Google Scholar
[48]
M. B. Zbib, U. Sahaym, and D. Bahri, Characterization of silicon nanoparticles formed from a fluidized bed reactor and their incorporation onto metal-coated carbon fibers, Journal of metals. 66(2014) 82-86.
DOI: 10.1007/s11837-013-0805-y
Google Scholar
[49]
A. A. Onischuk, V. P. Strunin, M. A. Ushakova, V. N. Panfilov, On the pathways of aerosol formation by thermal decomposition of silane, Journal of Aerosol Science. 28(1997) 207-222.
DOI: 10.1016/s0021-8502(96)00061-4
Google Scholar
[50]
F. Huisken, H. Hofmeister, B. Kohn, M. A. Laguna, V. Paillard, Laser production and deposition of light-emitting silicon nanoparticles, Applied Surface Science. 154-155(2000)305-313.
DOI: 10.1016/s0169-4332(99)00476-6
Google Scholar
[51]
M. J. Kirchhof, H. J. Schmid, W. Peukert, Reactor system for the study of high-temperature short-time sintering of nanoparticles, Review of Scientific Instruments. 75(2004) 4833-4840.
DOI: 10.1063/1.1809258
Google Scholar
[52]
J. Fernández de la Mora, N. Rao, P. H. Mc Murry, Inertial impaction of fine particles at moderate Reynolds numbers and in the transonic regime with a thin-plate orifice nozzle, Journal of Aerosol Science. 21 (1990) 889-909.
DOI: 10.1016/0021-8502(90)90160-y
Google Scholar
[53]
S. Balaji, J. Du, C. M. White, B. E. Ydstie, Multi-scale modeling and control of fluidized beds for the production of solar grade silicon, Powder Technology. 199(2010) 23-31.
DOI: 10.1016/j.powtec.2009.04.022
Google Scholar
[54]
J. Du, B. E. Ydstie, Modeling and control of particulate processes and application to poly-silicon production, Chemical Engineering Science. 67(2012) 120-130.
DOI: 10.1016/j.ces.2011.08.023
Google Scholar
[55]
S. K. Iya, U.S. Patent, 4, 684, 513. (1987).
Google Scholar
[56]
C. M. White, P. Ege and B. E. Ydstie, Size distribution modeling for fluidized bed solar-grade silicon production, Powder Technology. 163(2006) 51-58.
DOI: 10.1016/j.powtec.2006.01.005
Google Scholar
[57]
M. Frenklach, L. Ting, H. Wang, M. J. Rabinowtiz, Silicon particle formation in pyrolysis of silane and disilane, Israel Journal of Chemistry. 36 (1996) 293-303.
DOI: 10.1002/ijch.199600041
Google Scholar
[58]
P. Ho, M. E. Coltrin, W. G. Breiland, Laser-induced fluorescence measurements and kinetic analysis of Si atom formation in a rotating disk chemical vapor deposition reactor. Journal of Physical Chemistry, 98(1994) 10138-10147.
DOI: 10.1021/j100091a032
Google Scholar
[59]
C. Hollenstein, J. L. Dorier, J. Dutta, A. A. Howling, Diagnostics of particle genesis and growth in RF silane plasmas by ion mass spectrometry and light scattering, Plasma Sources Science & Technology. 3(1994) 278-285.
DOI: 10.1088/0963-0252/3/3/007
Google Scholar
[60]
A. A. Onischuk, A. I. Levykin, V. P. Strunin, K. K. Sabelfeld, V. N. Panfilov, Aggregate formation under homogeneous silane thermal decomposition, Journal of Aerosol Science. 31(2000), 1263-1281.
DOI: 10.1016/s0021-8502(00)00031-8
Google Scholar
[61]
R. Körmer, H. J. Schmid, and W. Peukert, Aerosol synthesis of silicon nanoparticles with narrow size distribution-Part 2: Theoretical analysis of the formation mechanism, Journal of Aerosol Science. 41 (2010) 1008-1019.
DOI: 10.1016/j.jaerosci.2010.08.002
Google Scholar
[62]
W. J. Menz, M. Kraft, A new model for silicon nanoparticle synthesis, Combustion and Flame. 160(2013) 947-958.
DOI: 10.1016/j.combustflame.2013.01.014
Google Scholar
[63]
T. Hogness, T. Wilson, and W. Johnson, The thermal decomposition of silane, Journal of the American Chemical Society. 58(1936) 108-112.
DOI: 10.1021/ja01292a036
Google Scholar
[64]
J. H. Purnell, R. Walsh, The pyrolysis of monosilane, Proceedings of the Royal Society Series A. 293(1966) 543-561.
Google Scholar
[65]
A. Yuuki, Y. Matsui and K. Tachibana, A numerical study on gaseous reactions in silane pyrolysis, Japanese Journal of Applied Physics. 27 (1987) 747-754.
DOI: 10.1143/jjap.26.747
Google Scholar
[66]
H. V. Nguyen, R. C. Flagan, Particle formation and growth in single-stage aerosol reactors, Langmuir. 7(1991) 1807-1814.
DOI: 10.1021/la00056a038
Google Scholar
[67]
F. Slootman, J. Parent, Homogeneous gas-phase nucleation in silane pyrolysis, Journal of Aerosol Science. 25 (1994) 15-21.
DOI: 10.1016/0021-8502(94)90178-3
Google Scholar
[68]
S. L. Girshick, C. P. Chiu, Homogeneous nucleation of particles from the vapor phase in thermal plasma synthesis, Plasma Chemistry & Plasma Processing. 9(1989) 355-369.
DOI: 10.1007/bf01083672
Google Scholar
[69]
C. S. Herrick, D. W. Woodruff, The homogeneous nucleation of condensed silicon in the gaseous Si-H-Cl system, Journal of the Electrochemical Society. 131 (1984) 2417-2422.
DOI: 10.1149/1.2115307
Google Scholar
[70]
F. E. Kruis, J. Schoonman and B. Scarlett, Homogeneous nucleation of silicon, Journal of Aerosolence. 25(1994) 1291-1304.
DOI: 10.1016/0021-8502(94)90126-0
Google Scholar
[71]
W. J. Menz, S. Shekar, G. Brownbridge, S. Mosbach, R. Körmer, W. Peukert, Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study, Journal of Aerosol Science. 44 (2012) 46-61.
DOI: 10.1016/j.jaerosci.2011.10.005
Google Scholar
[72]
M. Sander, R. H. West and M. S. C. M. Kraft, A detailed model for the sintering of poly-dispersed nanoparticle agglomerates, Aerosol Science & Technology. 43(2009), 978-989.
DOI: 10.1080/02786820903092416
Google Scholar
[73]
M. Celnik, R. Patterson, M. Kraft, W. Wagner, Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting, Combustion and Flame. 148(2007) 158-176.
DOI: 10.1016/j.combustflame.2006.10.007
Google Scholar
[74]
W. Koch, S. K. Friedlander, The effect of particle coalescence on the surface area of a coagulating aerosol, Journal of Aerosol Science. 140(1990), 419-427.
DOI: 10.1016/0021-9797(90)90362-r
Google Scholar
[75]
K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. J. Yates, K. C. Janda, Hydrogen desorption from the monohydride phase on Si(100), Journal of Chemical Physics. 92 (1990) 5700-5711.
DOI: 10.1063/1.458501
Google Scholar