Reduction-Degradable Shell Cross-Linked Micelle with pH-Responsive Cores Prepared via Click Chemistry

Article Preview

Abstract:

A well-defined poly [(ethylene glycol)-block-2-(dimethylamino) ethyl methacrylate-block-2-(diethylamino) methacrylate] (PEG-b-DMA-b-DEA) triblock copolymer was synthesized via atom transfer radical polymerization (ATRP) by successively polymerization of DMA and DEA monomers using a PEG-based macroinitiator, and obtained copolymer was then converted to be PEG-b-P(DMA-co-QDMA)-b-PDEA copolymer with “clickable” moieties in the middle block by the quaternization with propargyl bromide. Those copolymers prepared were characterized by proton Nuclear Magnetic Resonance (1H NMR) and Gel Permeation Chromatography (GPC), and its self-assembly behavior and subsequently fixation with bis-(azidoethyl) disulfide via click chemistry resulting reduction-sensitive shell-cross-linked (SCL) micelle in purely aqueous solution were investigated by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The results show the micellar structure could be effectively cross-linked via click chemistry and also be dissociated at reduction condition, which may realize it's potential application as novel drug delivery carriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

527-531

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Peer, J.M. Karp, S. Hong, O.C. FaroKhzad, R. Margalit, R. Langer. Nanotechnol. 2 (2007) 751.

Google Scholar

[2] M. E. Davis, Z. Chen, D. M. Shin. Rev. Drug Discov. 7 (2008) 771.

Google Scholar

[3] T. K. Bronich, P. A. Keifer, L. S. Shlyakhtenko, A. V. Kabanov. J. Am. Chem. Soc. 127 (2005) 8236-8237.

DOI: 10.1021/ja043042m

Google Scholar

[4] (a) K. B. Thurmond, T. Kowalewski, K. L. Wooley. J. Am. Chem. Soc. 118 (1996) 7239-7240. (b) K. B. Thurmond, T. Kowalewski, K. L. Wooley. J. Am. Chem. Soc. 119 (1997) 6656-6665.

DOI: 10.1021/ja961299h

Google Scholar

[5] H. Y. Huang, T. Kowalewski, E. E. Remsen, R. Gertzmann, K. L. Wooley. J. Am. Chem. Soc. 119 (1997) 11653-11659.

DOI: 10.1021/ja9717469

Google Scholar

[6] E. E. Remsen, K. B. Thurmond, K. L. Wooley. Macromolecules. 32 (1999) 3685-3689.

Google Scholar

[7] Y. T. Li, B. S. Lokitz, C. L. McCormick. Macromolecules. 39 (2006) 81-89.

Google Scholar

[8] Y. T. Li, B. S. Lokitz, S. P. Armes, C. L. McCormick. Macromolecules. 39 (2006) 2726-2728.

Google Scholar

[9] J.Y. Zhang, X. Z. Jiang, Y. F. Zhang, Y. T. Li, S.Y. Liu. Macromolecules. 40 (2007) 9125-9132.

Google Scholar

[10] S. Y. Liu, J. V. M. Weaver, M. Save, S. P. Armes. Langmuir. 18 (2002) 8350-8357.

Google Scholar

[11] S. Y. Liu, Y. H. Ma, S. P. Armes, C. Perruchot, J. F. Watts. Langmuir. 18 (2002) 7780-7784.

Google Scholar

[12] V. Butun, N. C. Billingham, S. P. Armes. J. Am. Chem. Soc. 120 (1998) 2135-12136.

Google Scholar

[13] M. J. Joralemon, R. K. O'Reilly, C. J. Hawker and K. L. Wooley. J. Am. Chem. Soc., 127 (2005) 16892-16899.

Google Scholar

[14] X. Z. Jiang, G. Y. Zhang, R. Narain, S. Y. Liu. Langmuir. 25 (2009) 2046-(2054).

Google Scholar

[15] Z. Deng, M. Ahmed, R. J. Narain. Polym. Sci: Part A: Polym. Chem. 47 (2009) 614-627.

Google Scholar

[16] Y. Wang, R. Zhang, N. Xu, F. S. Du, Y. L. Wang, Y. X. Tan, S. P. Ji, D. H. Liang, Z. C. Li. Biomacromolecules, 12 (2011) 66-74.

Google Scholar

[17] Z. Y. Zhu, J. Xu, Y. M. Zhou, X. Z. Jiang, S. P. Armes, S. Y. Liu. Macromolecules, 40 (2007) 6393-6400.

Google Scholar