[1]
M. Gong, T. A. Shastry, Y. Xie, M. Bernardi, D. Jasion, K. A. Luck, T. J. Marks, J. C. Grossman, S. Ren, and M. C. Hersam, Polychiral Semiconducting Carbon Nanotube−Fullerene Solar Cells, Nano Lett. 14(2014)5308−5314.
DOI: 10.1021/nl5027452
Google Scholar
[2]
E. Wilson and M. F. Islam, Ultra-compressible, High-Rate Supercapacitors from Graphene-Coated Carbon Nanotube Aerogels, ACS Appl. Mater. Interfaces, 7(2015)5612−5618.
DOI: 10.1021/acsami.5b01384
Google Scholar
[3]
Y. Zhang, M. Xu, B. R. Bunes, N. Wu, D. E. Gross, J. S. Moore, and L. Zang, Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for Selective Detection of Nitroaromatic Explosives, ACS Appl. Mater. Interfaces. 7(2015)7471−7475.
DOI: 10.1021/acsami.5b01532
Google Scholar
[4]
B. Kim, Y. Lu, T. Kim, J. Han, M. Meyyappan, and J. Li, Carbon Nanotube Coated Paper Sensor for Damage Diagnosis, ACSNano. 8(2015)12092–12097.
DOI: 10.1021/nn5037653
Google Scholar
[5]
J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, and T. Chen, Janus Polymer/Carbon Nanotube Hybrid Membranes for Oil/Water Separation, ACS Appl. Mater. Interfaces. 6(2014)16204−16209.
DOI: 10.1021/am504326m
Google Scholar
[6]
H. R. Barzegar, E. Gracia-Espino, A. Yan, C. Ojeda-Aristizabal, G. Dunn, T. Wågberg, and A. Zettl, C60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods, Nano Lett. 15(2015)829−834.
DOI: 10.1021/nl503388f
Google Scholar
[7]
F. Inoue, R. A. Ando, C. M. S. Izumi, and P. Corio, Spectroscopic Characterization of Carbon Nanotube-Polypyrrole Composites, J. Phys. Chem. C. 118(2014)18240−18248.
DOI: 10.1021/jp505525k
Google Scholar
[8]
R. Wang, T. Hong, and Y. Xu, Ultrathin Single-Walled Carbon Nanotube Network Framed Graphene Hybrids, ACS Appl. Mater. Interfaces. 7(2015)5233−5238.
DOI: 10.1021/am5082843
Google Scholar
[9]
M. Gong, T. A. Shastry, Q. Cui, R. R. Kohlmeyer, K. A. Luck, A. Rowberg, T. J. Marks, M. F. Durstock, H. Zhao, M. C. Hersam, and S. Ren, Understanding Charge Transfer in Carbon Nanotube−Fullerene Bulk Heterojunctions, ACS Appl. Mater. Interfaces. 7(2015).
DOI: 10.1021/acsami.5b01536
Google Scholar
[10]
H. Gheybia and M. Adeli, Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers, Polym. Chem. 6(2015)2580–2615.
DOI: 10.1039/c4py01437e
Google Scholar
[11]
L. Kong, C. S. Alves, W. Hou, J. Qiu, H. Möhwald, H. Tomás, and X. Shi, RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells, ACS Appl. Mater. Interfaces. 7(2015)4833−4843.
DOI: 10.1021/am508760w
Google Scholar
[12]
H. Wang, W. Tang, H. Wei, Y. Zhao, S. Hu, Y. Guan, W. Pan, B. Xia, N. Li and F. Liu, Integrating dye-intercalated DNA dendrimers with electrospun nanofibers: a new fluorescent sensing platform for nucleic acids, proteins, and cells, J. Mater. Chem. B. 3(2015).
DOI: 10.1039/c5tb00357a
Google Scholar
[13]
F. Li, J. Peng, Q. Zheng, X. Guo, H. Tang, and S. Yao, Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24, Anal. Chem. 87(2015)4806−4813.
DOI: 10.1021/acs.analchem.5b00093
Google Scholar
[14]
E. Soršak, J. Volmajer Valh, Š. Korent Urek and A. Lobnik, Application of PAMAM dendrimers in optical sensing, Analyst. 140(2015)976-989.
DOI: 10.1039/c4an00825a
Google Scholar
[15]
L. Chong and M. Dutt, Design of PAMAM-COO dendron-grafted surfaces to promote Pb(II) ion adsorption, Phys. Chem. Chem. Phys. 17(2015)10615-10623.
DOI: 10.1039/c5cp00309a
Google Scholar
[16]
K. J. Shah, T. Imae and A. Shukla, Selective capture of CO2 by poly(amido amine) dendrimer-loaded organoclays, RSC Adv. 5(2015)35985–35992.
DOI: 10.1039/c5ra04904k
Google Scholar
[17]
A. Kannan and P. Rajakumar, Synthesis and catalytic application of glycodendrimers decorated with gold nanoparticles – reduction of 4-nitrophenol, RSC Adv. 5(2015)46908–46915.
DOI: 10.1039/c5ra06375b
Google Scholar
[18]
V. Brunetti, a L. M. Boucheta and M. C. Strumia, Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems, Nanoscale. 7(2015)3808–3816.
DOI: 10.1039/c4nr04438j
Google Scholar
[19]
H. Sun, S. Zhang and V. Percec, From structure to function via complex supramolecular dendrimer systems, Chem. Soc. Rev. 44(2015)3900-3923.
DOI: 10.1039/c4cs00249k
Google Scholar
[20]
W. Wu, R. Tang, Q. Li and Z. Li, Functional hyperbranched polymers with advanced optical, electrical and magnetic properties, Chem. Soc. Rev. 44(2015)3997—4022.
DOI: 10.1039/c4cs00224e
Google Scholar
[21]
R. Soleymana and M. Adeli, Impact of dendritic polymers on nanomaterials, Polym. Chem. 6(2015)10–24.
Google Scholar
[22]
K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials, Angew. Chem. Int. Ed. 54(2015)5677-5682.
DOI: 10.1002/anie.201500203
Google Scholar
[23]
S. Yang, and S. C. Zimmerman, Water-Soluble Polyglycerol Dendrimers with Two Orthogonally Reactive Core Functional Groups for One-Pot Functionalization, Macromolecules. 48(2015)2504−2508.
DOI: 10.1021/acs.macromol.5b00164
Google Scholar
[24]
X. Li, Y. Watanabe, E. Yuba, A. Harada, T. Haino and K. Kono, Facile construction of well-defined fullerene–dendrimer supramolecular nanocomposites for bioapplications, Chem. Commun. 51(2015)2851—2854.
DOI: 10.1039/c4cc09082a
Google Scholar
[25]
H. K. Alajangi and D. Santhiya, Fluorescence and Fo¨rster resonance energy transfer investigations on DNA oligonucleotide and PAMAM dendrimer packing interactions in dendriplexes, Phys. Chem. Chem. Phys. 17(2015)8680-8691.
DOI: 10.1039/c4cp05295a
Google Scholar
[26]
E. Fedeli, A. Lancelot, J. L. Serrano, P. Calvo and T. Sierra, Self-assembling amphiphilic Janus dendrimers: mesomorphic properties and aggregation in water, New J. Chem. 39(2015)1960—(1967).
DOI: 10.1039/c4nj02071e
Google Scholar
[27]
P. Wessig, D. Budach, and A. F. Thünemann, Dendrimers with Oligospiroketal (OSK) Building Blocks: Synthesis and Properties, Chem. Eur. J. 21(2015) 10466–10471.
DOI: 10.1002/chem.201501386
Google Scholar
[28]
F. Setaro, M. Brasch, U. Hahn, M. S. T. Koay, J. J. L. M. Cornelissen, A. Escosura, and T. Torres, Generation-Dependent Templated Self-Assembly of Biohybrid Protein Nanoparticles around Photosensitizer Dendrimers, Nano Lett. 15(2015)1245-1251.
DOI: 10.1021/nl5044055
Google Scholar
[29]
H. Nagatani, H. Sakae, T. Torikai, T. Sagara, and H. Imura, Photoinduced Electron Transfer of PAMAM Dendrimer−Zinc(II) Porphyrin Associates at Polarized Liquid/Liquid Interfaces, Langmuir. 31(2015)6237−6244.
DOI: 10.1021/acs.langmuir.5b01165
Google Scholar
[30]
Z. Xun, T. Yu, Y. Zeng, J. Chen, X. Zhang, G. Yang and Y. Li, Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production, J. Mater. Chem. A. 3(2015)12965-12971.
DOI: 10.1039/c5ta02565f
Google Scholar
[31]
X. Liu, B. He, Z. Xu, M. Yin, W. Yang, H. Zhang, J. Cao and J. Shen, A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control, Nanoscale. 7(2015)445-449.
DOI: 10.1039/c4nr05733c
Google Scholar