NIR (Near-Infrared) Driven Carbon Nanotube Modified with Dendrimers

Article Preview

Abstract:

Dendrimers and carbon nanotube took an important role in transport and delivery of drugs, gene, et al, however, to improve its functional properties is still a great challenge. Carbon nanotube not only has good biocompatibility but also hold optical adsorption in NIR. In biomimetic and biomedical fields, nanorobots or nanocarriers with external stimuli response for removal the organic pollutants and toxins or drugs in the living body are attractive for research and applications. In this paper, the self-assembly with CNTs containing –COOH and dendrimers having –NH2 groups was carried out. A series of characterizations were performed by SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (X-ray diffraction), and Fourier-Transform Infrared (FTIR) spectra. The adsorption properties and releasing characteristics of CNTs modified with dendrimers were performed with simulating drugs. Some meaningful results were obtained. The photoconductivity response to visible light and 808 nm laser with low-power were studied based on interdigital electrodes of Au on flexible PET(polyethylene terephthalate) film substrate. The results indicated that CNTs modified with dendrimers showed good photo-response to visible light and 808 nm laser. It would be developing smart nanorobots with external stimuli response for removal the organic pollutants and toxins or drugs in the living body.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

551-556

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Gong, T. A. Shastry, Y. Xie, M. Bernardi, D. Jasion, K. A. Luck, T. J. Marks, J. C. Grossman, S. Ren, and M. C. Hersam, Polychiral Semiconducting Carbon Nanotube−Fullerene Solar Cells, Nano Lett. 14(2014)5308−5314.

DOI: 10.1021/nl5027452

Google Scholar

[2] E. Wilson and M. F. Islam, Ultra-compressible, High-Rate Supercapacitors from Graphene-Coated Carbon Nanotube Aerogels, ACS Appl. Mater. Interfaces, 7(2015)5612−5618.

DOI: 10.1021/acsami.5b01384

Google Scholar

[3] Y. Zhang, M. Xu, B. R. Bunes, N. Wu, D. E. Gross, J. S. Moore, and L. Zang, Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for Selective Detection of Nitroaromatic Explosives, ACS Appl. Mater. Interfaces. 7(2015)7471−7475.

DOI: 10.1021/acsami.5b01532

Google Scholar

[4] B. Kim, Y. Lu, T. Kim, J. Han, M. Meyyappan, and J. Li, Carbon Nanotube Coated Paper Sensor for Damage Diagnosis, ACSNano. 8(2015)12092–12097.

DOI: 10.1021/nn5037653

Google Scholar

[5] J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, and T. Chen, Janus Polymer/Carbon Nanotube Hybrid Membranes for Oil/Water Separation, ACS Appl. Mater. Interfaces. 6(2014)16204−16209.

DOI: 10.1021/am504326m

Google Scholar

[6] H. R. Barzegar, E. Gracia-Espino, A. Yan, C. Ojeda-Aristizabal, G. Dunn, T. Wågberg, and A. Zettl, C60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods, Nano Lett. 15(2015)829−834.

DOI: 10.1021/nl503388f

Google Scholar

[7] F. Inoue, R. A. Ando, C. M. S. Izumi, and P. Corio, Spectroscopic Characterization of Carbon Nanotube-Polypyrrole Composites, J. Phys. Chem. C. 118(2014)18240−18248.

DOI: 10.1021/jp505525k

Google Scholar

[8] R. Wang, T. Hong, and Y. Xu, Ultrathin Single-Walled Carbon Nanotube Network Framed Graphene Hybrids, ACS Appl. Mater. Interfaces. 7(2015)5233−5238.

DOI: 10.1021/am5082843

Google Scholar

[9] M. Gong, T. A. Shastry, Q. Cui, R. R. Kohlmeyer, K. A. Luck, A. Rowberg, T. J. Marks, M. F. Durstock, H. Zhao, M. C. Hersam, and S. Ren, Understanding Charge Transfer in Carbon Nanotube−Fullerene Bulk Heterojunctions, ACS Appl. Mater. Interfaces. 7(2015).

DOI: 10.1021/acsami.5b01536

Google Scholar

[10] H. Gheybia and M. Adeli, Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers, Polym. Chem. 6(2015)2580–2615.

DOI: 10.1039/c4py01437e

Google Scholar

[11] L. Kong, C. S. Alves, W. Hou, J. Qiu, H. Möhwald, H. Tomás, and X. Shi, RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells, ACS Appl. Mater. Interfaces. 7(2015)4833−4843.

DOI: 10.1021/am508760w

Google Scholar

[12] H. Wang, W. Tang, H. Wei, Y. Zhao, S. Hu, Y. Guan, W. Pan, B. Xia, N. Li and F. Liu, Integrating dye-intercalated DNA dendrimers with electrospun nanofibers: a new fluorescent sensing platform for nucleic acids, proteins, and cells, J. Mater. Chem. B. 3(2015).

DOI: 10.1039/c5tb00357a

Google Scholar

[13] F. Li, J. Peng, Q. Zheng, X. Guo, H. Tang, and S. Yao, Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24, Anal. Chem. 87(2015)4806−4813.

DOI: 10.1021/acs.analchem.5b00093

Google Scholar

[14] E. Soršak, J. Volmajer Valh, Š. Korent Urek and A. Lobnik, Application of PAMAM dendrimers in optical sensing, Analyst. 140(2015)976-989.

DOI: 10.1039/c4an00825a

Google Scholar

[15] L. Chong and M. Dutt, Design of PAMAM-COO dendron-grafted surfaces to promote Pb(II) ion adsorption, Phys. Chem. Chem. Phys. 17(2015)10615-10623.

DOI: 10.1039/c5cp00309a

Google Scholar

[16] K. J. Shah, T. Imae and A. Shukla, Selective capture of CO2 by poly(amido amine) dendrimer-loaded organoclays, RSC Adv. 5(2015)35985–35992.

DOI: 10.1039/c5ra04904k

Google Scholar

[17] A. Kannan and P. Rajakumar, Synthesis and catalytic application of glycodendrimers decorated with gold nanoparticles – reduction of 4-nitrophenol, RSC Adv. 5(2015)46908–46915.

DOI: 10.1039/c5ra06375b

Google Scholar

[18] V. Brunetti, a L. M. Boucheta and M. C. Strumia, Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems, Nanoscale. 7(2015)3808–3816.

DOI: 10.1039/c4nr04438j

Google Scholar

[19] H. Sun, S. Zhang and V. Percec, From structure to function via complex supramolecular dendrimer systems, Chem. Soc. Rev. 44(2015)3900-3923.

DOI: 10.1039/c4cs00249k

Google Scholar

[20] W. Wu, R. Tang, Q. Li and Z. Li, Functional hyperbranched polymers with advanced optical, electrical and magnetic properties, Chem. Soc. Rev. 44(2015)3997—4022.

DOI: 10.1039/c4cs00224e

Google Scholar

[21] R. Soleymana and M. Adeli, Impact of dendritic polymers on nanomaterials, Polym. Chem. 6(2015)10–24.

Google Scholar

[22] K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials, Angew. Chem. Int. Ed. 54(2015)5677-5682.

DOI: 10.1002/anie.201500203

Google Scholar

[23] S. Yang, and S. C. Zimmerman, Water-Soluble Polyglycerol Dendrimers with Two Orthogonally Reactive Core Functional Groups for One-Pot Functionalization, Macromolecules. 48(2015)2504−2508.

DOI: 10.1021/acs.macromol.5b00164

Google Scholar

[24] X. Li, Y. Watanabe, E. Yuba, A. Harada, T. Haino and K. Kono, Facile construction of well-defined fullerene–dendrimer supramolecular nanocomposites for bioapplications, Chem. Commun. 51(2015)2851—2854.

DOI: 10.1039/c4cc09082a

Google Scholar

[25] H. K. Alajangi and D. Santhiya, Fluorescence and Fo¨rster resonance energy transfer investigations on DNA oligonucleotide and PAMAM dendrimer packing interactions in dendriplexes, Phys. Chem. Chem. Phys. 17(2015)8680-8691.

DOI: 10.1039/c4cp05295a

Google Scholar

[26] E. Fedeli, A. Lancelot, J. L. Serrano, P. Calvo and T. Sierra, Self-assembling amphiphilic Janus dendrimers: mesomorphic properties and aggregation in water, New J. Chem. 39(2015)1960—(1967).

DOI: 10.1039/c4nj02071e

Google Scholar

[27] P. Wessig, D. Budach, and A. F. Thünemann, Dendrimers with Oligospiroketal (OSK) Building Blocks: Synthesis and Properties, Chem. Eur. J. 21(2015) 10466–10471.

DOI: 10.1002/chem.201501386

Google Scholar

[28] F. Setaro, M. Brasch, U. Hahn, M. S. T. Koay, J. J. L. M. Cornelissen, A. Escosura, and T. Torres, Generation-Dependent Templated Self-Assembly of Biohybrid Protein Nanoparticles around Photosensitizer Dendrimers, Nano Lett. 15(2015)1245-1251.

DOI: 10.1021/nl5044055

Google Scholar

[29] H. Nagatani, H. Sakae, T. Torikai, T. Sagara, and H. Imura, Photoinduced Electron Transfer of PAMAM Dendrimer−Zinc(II) Porphyrin Associates at Polarized Liquid/Liquid Interfaces, Langmuir. 31(2015)6237−6244.

DOI: 10.1021/acs.langmuir.5b01165

Google Scholar

[30] Z. Xun, T. Yu, Y. Zeng, J. Chen, X. Zhang, G. Yang and Y. Li, Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production, J. Mater. Chem. A. 3(2015)12965-12971.

DOI: 10.1039/c5ta02565f

Google Scholar

[31] X. Liu, B. He, Z. Xu, M. Yin, W. Yang, H. Zhang, J. Cao and J. Shen, A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control, Nanoscale. 7(2015)445-449.

DOI: 10.1039/c4nr05733c

Google Scholar