Determination of Gelation Kinetic Parameters for a Chitosan/β-Glycerophosphate Injectable Hydrogel by Means of Rheological Measurement

Article Preview

Abstract:

The aim of the current study was to improve the knowledge of the gelation process of injectable thermosensitive hydrogels comprising chitosan (CS) and β-glycerophosphate disodium salt (β-GP). The sol-gel transition process was precisely tracked by means of rheological measurement, in which the viscosity changed considerably with gelation time and temperature. The zero-order kinetics model was assumed to adequately describe the extent of gelation reaction. The reaction rate constant increased continuously with the increasing temperature and β-GP concentration. According to Arrhenius equation, the activation energies of gelation reaction for the chitosan injectable hydrogels were calculated as 64.38 KJ/mol, 101.68 KJ/mol and 140.92 KJ/mol for the samples containing 4% w/v, 6% w/v and 8% w/v of β-GP, respectively. It could be an effective way to study the gelation dynamics of injectable hydrogels, and provide references for clinical practice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

543-550

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chenite A, Chaput C, Wang D, Combes C, Buschmann M, Hoemann C, Leroux J, Atkinson B, Binette F, Selmani A, Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials 21(21): 2155-2161, (2000).

DOI: 10.1016/s0142-9612(00)00116-2

Google Scholar

[2] Giuseppe Molinaro J-CL, Jacques Damas, Albert Adam, Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials, Biomaterials 23(13): 6, (2002).

DOI: 10.1016/s0142-9612(02)00004-2

Google Scholar

[3] Khodaverdi E, Ganji F, Tafaghodi M, Sadoogh M, Effects of formulation properties on sol–gel behavior of chitosan/glycerolphosphate hydrogel, Iran Polym J 22(10): 785-790, (2013).

DOI: 10.1007/s13726-013-0177-8

Google Scholar

[4] Aliaghaie M, Mirzadeh H, Dashtimoghadam E, Taranejoo S, Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application, Soft Matter8(27): 7128, (2012).

DOI: 10.1039/c2sm25254f

Google Scholar

[5] Zhou HY, Zhang YP, Zhang WF, Chen XG, Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery, Carbohydrate Polymers 83(4): 1643-1651, (2011).

DOI: 10.1016/j.carbpol.2010.10.022

Google Scholar

[6] Li C, Ren S, Dai Y, Tian F, Wang X, Zhou S, Deng S, Liu Q, Zhao J, Chen X, Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/beta-glycerophosphate hydrogel loaded with docetaxel, AAPS PharmSciTech 15(2): 417-424, (2014).

DOI: 10.1208/s12249-014-0077-z

Google Scholar

[7] Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux J-C, A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel, Eur J Pharm Biopharm 57(1): 53-63, (2004).

DOI: 10.1016/s0939-6411(03)00095-x

Google Scholar

[8] Peng Y, Li J, Fei Y, Dong J, Pan W, Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride, Int J Pharm 441(1-2): 482-490, (2013).

DOI: 10.1016/j.ijpharm.2012.11.005

Google Scholar

[9] Zhang D, Sun P, Li P, Xue A, Zhang X, Zhang H, Jin X, A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guerin in the treatment of bladder cancer, Biomaterials 34(38): 10258-10266, (2013).

DOI: 10.1016/j.biomaterials.2013.09.027

Google Scholar

[10] Ganji F, Abdekhodaie MJ, Ramazani A, Gelation time and degradation rate of chitosan-based injectable hydrogel, J. Sol-Gel Sci. Technol 42(1): 47-53, (2007).

DOI: 10.1007/s10971-006-9007-1

Google Scholar

[11] Nguyen MK, Lee DS, Injectable biodegradable hydrogels, Macromol Biosci 10(6): 563-579, (2010).

DOI: 10.1002/mabi.200900402

Google Scholar

[12] Ni P, Ding Q, Fan M, Liao J, Qian Z, Luo J, Li X, Luo F, Yang Z, Wei Y, Injectable thermosensitive PEG–PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects, Biomaterials35(1): 236-248, (2014).

DOI: 10.1016/j.biomaterials.2013.10.016

Google Scholar

[13] Watson BM, Kasper FK, Engel PS, Mikos AG, Synthesis and Characterization of Injectable, Biodegradable, Phosphate-Containing, Chemically Cross-Linkable, Thermoresponsive Macromers for Bone Tissue Engineering, Biomacromolecules 15 (5): 1788-1796, (2014).

DOI: 10.1021/bm500175e

Google Scholar

[14] Martínez‐Sanz E, Varghese OP, Kisiel M, Engstrand T, Reich KM, Bohner M, Jonsson KB, Kohler T, Müller R, Ossipov DA, Minimally invasive mandibular bone augmentation using injectable hydrogels, J Tissue Eng Regen M 6(S3): s15-s23, (2012).

DOI: 10.1002/term.1593

Google Scholar

[15] Martínez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP, Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation, J Control Release 152(2): 232-240, (2011).

DOI: 10.1016/j.jconrel.2011.02.003

Google Scholar

[16] Park H, Choi B, Hu J, Lee M, Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering, Acta Biomater 9(1): 4779-4786, (2013).

DOI: 10.1016/j.actbio.2012.08.033

Google Scholar

[17] Both S, Wang R, Dijkstra P, Karperien M, Injectable hydrogels for cartilage repair, Osteoarthr Cartilage 22 S151-S152, (2014).

DOI: 10.1016/j.joca.2014.02.282

Google Scholar

[18] Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J, Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering, Tissue Eng Part A 16(8): 2429-2440, (2010).

DOI: 10.1089/ten.tea.2009.0764

Google Scholar

[19] Silva‐Correia J, Oliveira J, Caridade S, Oliveira J, Sousa R, Mano J, Reis R, Gellan gum‐based hydrogels for intervertebral disc tissue‐engineering applications, J Tissue Eng Regen M 5(6): e97-e107, (2011).

DOI: 10.1002/term.363

Google Scholar

[20] Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW, Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells, Biomaterials 27(3): 406-418, (2006).

DOI: 10.1016/j.biomaterials.2005.07.033

Google Scholar

[21] Vernengo J, Fussell G, Smith N, Lowman A, Evaluation of novel injectable hydrogels for nucleus pulposus replacement, J Biomed Mater Res B 84(1): 64-69, (2008).

DOI: 10.1002/jbm.b.30844

Google Scholar

[22] Macaya D, Spector M, Injectable hydrogel materials for spinal cord regeneration: a review, Biomed Mater 7(1): 012001, (2012).

DOI: 10.1088/1748-6041/7/1/012001

Google Scholar

[23] Piantino J, Burdick J, Goldberg D, Langer R, Benowitz L, An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury, Exp Neurol 201(2): 359-367, (2006).

DOI: 10.1016/j.expneurol.2006.04.020

Google Scholar

[24] Gupta D, Tator CH, Shoichet MS, Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord, Biomaterials 27(11): 2370-2379, (2006).

DOI: 10.1016/j.biomaterials.2005.11.015

Google Scholar

[25] Straley KS, Foo CWP, Heilshorn SC, Biomaterial design strategies for the treatment of spinal cord injuries, J Neurotraum 27(1): 1-19, (2010).

DOI: 10.1089/neu.2009.0948

Google Scholar

[26] Amini AA, Nair LS, Injectable hydrogels for bone and cartilage repair, Biomed Mater 7(2): 024105, (2012).

DOI: 10.1088/1748-6041/7/2/024105

Google Scholar

[27] Cheng YH, Hung KH, Tsai TH, Lee CJ, Ku RY, Chiu AW, Chiou SH, Liu CJ, Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension, Acta Biomater 10(10): 4360-4366, (2014).

DOI: 10.1016/j.actbio.2014.05.031

Google Scholar

[28] Ding K, Yang Z, Zhang YL, Xu JZ, Injectable thermosensitive chitosan/beta -glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability, Cell Biol Int 37(9): 977-987, (2013).

DOI: 10.1002/cbin.10123

Google Scholar

[29] Li L, Wang N, Jin X, Deng R, Nie S, Sun L, Wu Q, Wei Y, Gong C, Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention, Biomaterials 35(12): 3903-3917, (2014).

DOI: 10.1016/j.biomaterials.2014.01.050

Google Scholar

[30] Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, Bahrami AR, Ringe J, Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering, Cell biology international 38(1): 72-84 , (2014).

DOI: 10.1002/cbin.10181

Google Scholar

[31] Yan C, Songjian L, Xiaoming L, Yichen Z, Zhi H, Qingling F, Zhilai Z, Bomiao L, Bo Y, Noninvasive evaluation of injectable chitosan/nano-hydroxyapatite/collagen scaffold via ultrasound, J Nanomater 939821 -939827, (2012).

Google Scholar

[32] Ji QX, Chen XG, Zhao QS, Liu CS, Cheng XJ, Wang LC, Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties, J Mater Sci-Mater M 20(8): 1603-1610, (2009).

DOI: 10.1007/s10856-009-3729-x

Google Scholar

[33] Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M, PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release, J Control Release 103(3): 609-624, (2005).

DOI: 10.1016/j.jconrel.2004.12.019

Google Scholar

[34] Chung Y-M, Simmons KL, Gutowska A, Jeong B, Sol-gel transition temperature of PLGA-g-PEG aqueous solutions, Biomacromolecules 3(3): 511-516, (2002).

DOI: 10.1021/bm0156431

Google Scholar

[35] Chenite A, Buschmann M, Wang D, Chaput C, Kandani N, Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohyd Polym 46(1): 39-47, (2001).

DOI: 10.1016/s0144-8617(00)00281-2

Google Scholar

[36] Gautier C, Ponton A, Livage J, Lopez PJ, Coradin T, Rheological studies of diatom encapsulation in silica gel, J. Sol-Gel Sci. Technol. 50(2): 164-169, (2009).

DOI: 10.1007/s10971-008-1884-z

Google Scholar

[37] Mussatti FG, Macosko CW, Rheology of network forming systems, Polym Eng Sci 13(3): 236-240, (1973).

DOI: 10.1002/pen.760130312

Google Scholar