Gradient Nano-Grained Cu and Cu-Zn Alloys Processed by Surface Mechanical Attrition Treatment

Abstract:

Article Preview

Cu and Cu-30wt.%Zn alloys with stacking fault energies (SFEs) of 78 mJ/m2 and 14 mJ/m2 were processed by surface mechanical attrition treatment (SMAT) at room temperature and liquid nitrogen (LN) temperature, respectively. The effect of SFE and deformation temperature on tensile properties of these samples was investigated. The tensile testing results indicated that the yield strength and uniform elongation of these samples enhanced simultaneously with decreasing SFE. Meanwhile, the LN-SMAT processed samples exhibited remarkably higher strength and slightly lower ductility compared to those processed at room temperature. The SFE affected the deformation mechanisms of metals greatly. X-ray diffraction (XRD) measurements indicated that the twin density increased while the average grain size decreased with SFE decreasing, and twinning became the dominant deformation mechanism. The relationship between microstructure and mechanical property is also discussed.

Info:

Periodical:

Edited by:

Yafang Han, Ying Wu, Guangxian Li, Fu Sheng Pan, Runhua Fan and Xuefeng Liu

Pages:

580-587

Citation:

Z. Yin et al., "Gradient Nano-Grained Cu and Cu-Zn Alloys Processed by Surface Mechanical Attrition Treatment", Materials Science Forum, Vol. 848, pp. 580-587, 2016

Online since:

March 2016

Export:

Price:

$38.00

[1] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A. 38 (2004) 375-377.

DOI: https://doi.org/10.1016/j.msea.2003.10.261

[2] S.C. Tjong, H. Chen, Nanocrystalline materials and coatings, Mater. Sci. Eng. R. 1 (2004) 45.

[3] T. H. Fang, W. L. Li, N. R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper, Science. 331 (2011) 1587-1590.

DOI: https://doi.org/10.1126/science.1200177

[4] Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nat. Commun. 5 (2014) 3580.

DOI: https://doi.org/10.1038/ncomms4580

[5] X. Wu, P. Jiang, L. Chen, F. Yuan, Y. T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. U.S.A. 111(2014) 7197-7201.

[6] J.P. Hirth, J. Lothe. Theory of Dislocations, 2 Ed., John Wiley & Son Inc., Canada, (1982).

[7] Y.H. Zhao, Z. Horita, T.G. Langdon, Y.T. Zhu, Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys: Influence of stacking fault energy, Mater. Sci. Eng. A. 474 (2008) 342-347.

DOI: https://doi.org/10.1016/j.msea.2007.06.014

[8] L. Balogh, T. Ungár, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys, Acta. Mater. 56 (2008) 809-820.

DOI: https://doi.org/10.1016/j.actamat.2007.10.053

[9] S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing, Acta. Mater. 57 (2009) 1586-1601.

DOI: https://doi.org/10.1016/j.actamat.2008.12.002

[10] B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Overview no. 96 evolution of f. c. c. deformation structures in polyslip, Acta Metall. Mater. 40 (1992) 205-219.

DOI: https://doi.org/10.1016/0956-7151(92)90296-q

[11] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy, Appl. Phys. Lett. 89 (2006) 121906.

DOI: https://doi.org/10.1063/1.2356310

[12] Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang, Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing, Mater. Sci. Eng. A. 528(2011) 4259-4267.

DOI: https://doi.org/10.1016/j.msea.2010.12.080

[13] H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, C.C. Koch, Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys, Mater. Sci. Eng. A. 529 (2011).

DOI: https://doi.org/10.1016/j.msea.2011.09.022

[14] Z.S. You, L. Lu, K. Lu, Temperature effect on rolling behavior of nano-twinned copper, Scripta Mater. 62 (2010) 415-418.

DOI: https://doi.org/10.1016/j.scriptamat.2009.12.002

[15] Y. Zhang, N.R. Tao, K. Lu, Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta. Mater, 56 (2008) 2429-2440.

DOI: https://doi.org/10.1016/j.actamat.2008.01.030

[16] Y. Wang, E. Ma, R. Z. Valiev, Y. T Zhu, Tough nanostructured metals at cryogenic temperatures, Adv. Mater. 16(2004) 328-331.

DOI: https://doi.org/10.1002/adma.200305679

[17] X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, Z.F. Zhang, High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys, Appl. Phys. Lett. 92(2008) 201915.

DOI: https://doi.org/10.1063/1.2936306

[18] K. Lu, J. Lu, Surface nanocrystallization (SNC) of metallic materials: presentation of the concept behind a new approach, J. Mater. Sci. Technol. 15 (1999) 193-197.

[19] T. Ungár, S. Ott, P.G. Sanders, A. Borbély, J.R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater. 46 (1998).

DOI: https://doi.org/10.1016/s1359-6454(98)00001-9

[20] C.N.J. Wagner, Stacking faults by low-temperature cold work in copper and alpha brass, Acta Metall. 5 (1957) 427-434.

DOI: https://doi.org/10.1016/0001-6160(57)90060-3

[21] J.B. Cohen, C.N.J. Wagner, Determination of twin fault probabilities from the diffraction patterns of fcc metals and alloys, J. Appl. Phys. 33 (1962) (2073).

[22] T. Ungar, Microstructural parameters from X-ray diffraction peak broadening, Scripta Mater. 51 (2004) 777-781.

DOI: https://doi.org/10.1016/j.scriptamat.2004.05.007

[23] M.A. Meyers, K.K. Chawla, Mechanical Metallurgy-Principles and Applications, Prentice Hall, Englewood Cliffs, NJ, (1984).

[24] J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedus, T.G. Langdon, Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy, Mater. Sci. Eng. A. 527 (2010) 752-760.

DOI: https://doi.org/10.1016/j.msea.2009.08.071

[25] Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T. Zhu, Simultaneously increasing the ductility and strength of Ultra-Fine-Grained pure copper, Adv. Mater. 18 (2006) 2949-2953.

DOI: https://doi.org/10.1002/adma.200601472

[26] P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, Y.T. Zhu, Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening, Mater. Sci. Eng. A. 525 (2009).

DOI: https://doi.org/10.1016/j.msea.2009.06.030

[27] C. Zener, J.H. Hollomon, Effect of strain-rate on plastic flow of steel, J. Appl. Phys. 15 (1944) 22-32.