Gradient Nano-Grained Cu and Cu-Zn Alloys Processed by Surface Mechanical Attrition Treatment

Article Preview

Abstract:

Cu and Cu-30wt.%Zn alloys with stacking fault energies (SFEs) of 78 mJ/m2 and 14 mJ/m2 were processed by surface mechanical attrition treatment (SMAT) at room temperature and liquid nitrogen (LN) temperature, respectively. The effect of SFE and deformation temperature on tensile properties of these samples was investigated. The tensile testing results indicated that the yield strength and uniform elongation of these samples enhanced simultaneously with decreasing SFE. Meanwhile, the LN-SMAT processed samples exhibited remarkably higher strength and slightly lower ductility compared to those processed at room temperature. The SFE affected the deformation mechanisms of metals greatly. X-ray diffraction (XRD) measurements indicated that the twin density increased while the average grain size decreased with SFE decreasing, and twinning became the dominant deformation mechanism. The relationship between microstructure and mechanical property is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

580-587

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A. 38 (2004) 375-377.

DOI: 10.1016/j.msea.2003.10.261

Google Scholar

[2] S.C. Tjong, H. Chen, Nanocrystalline materials and coatings, Mater. Sci. Eng. R. 1 (2004) 45.

Google Scholar

[3] T. H. Fang, W. L. Li, N. R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper, Science. 331 (2011) 1587-1590.

DOI: 10.1126/science.1200177

Google Scholar

[4] Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nat. Commun. 5 (2014) 3580.

DOI: 10.1038/ncomms4580

Google Scholar

[5] X. Wu, P. Jiang, L. Chen, F. Yuan, Y. T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. U.S.A. 111(2014) 7197-7201.

DOI: 10.1073/pnas.1324069111

Google Scholar

[6] J.P. Hirth, J. Lothe. Theory of Dislocations, 2 Ed., John Wiley & Son Inc., Canada, (1982).

Google Scholar

[7] Y.H. Zhao, Z. Horita, T.G. Langdon, Y.T. Zhu, Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys: Influence of stacking fault energy, Mater. Sci. Eng. A. 474 (2008) 342-347.

DOI: 10.1016/j.msea.2007.06.014

Google Scholar

[8] L. Balogh, T. Ungár, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys, Acta. Mater. 56 (2008) 809-820.

DOI: 10.1016/j.actamat.2007.10.053

Google Scholar

[9] S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing, Acta. Mater. 57 (2009) 1586-1601.

DOI: 10.1016/j.actamat.2008.12.002

Google Scholar

[10] B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Overview no. 96 evolution of f. c. c. deformation structures in polyslip, Acta Metall. Mater. 40 (1992) 205-219.

DOI: 10.1016/0956-7151(92)90296-q

Google Scholar

[11] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy, Appl. Phys. Lett. 89 (2006) 121906.

DOI: 10.1063/1.2356310

Google Scholar

[12] Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang, Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing, Mater. Sci. Eng. A. 528(2011) 4259-4267.

DOI: 10.1016/j.msea.2010.12.080

Google Scholar

[13] H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, C.C. Koch, Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys, Mater. Sci. Eng. A. 529 (2011).

DOI: 10.1016/j.msea.2011.09.022

Google Scholar

[14] Z.S. You, L. Lu, K. Lu, Temperature effect on rolling behavior of nano-twinned copper, Scripta Mater. 62 (2010) 415-418.

DOI: 10.1016/j.scriptamat.2009.12.002

Google Scholar

[15] Y. Zhang, N.R. Tao, K. Lu, Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta. Mater, 56 (2008) 2429-2440.

DOI: 10.1016/j.actamat.2008.01.030

Google Scholar

[16] Y. Wang, E. Ma, R. Z. Valiev, Y. T Zhu, Tough nanostructured metals at cryogenic temperatures, Adv. Mater. 16(2004) 328-331.

DOI: 10.1002/adma.200305679

Google Scholar

[17] X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, Z.F. Zhang, High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys, Appl. Phys. Lett. 92(2008) 201915.

DOI: 10.1063/1.2936306

Google Scholar

[18] K. Lu, J. Lu, Surface nanocrystallization (SNC) of metallic materials: presentation of the concept behind a new approach, J. Mater. Sci. Technol. 15 (1999) 193-197.

Google Scholar

[19] T. Ungár, S. Ott, P.G. Sanders, A. Borbély, J.R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater. 46 (1998).

DOI: 10.1016/s1359-6454(98)00001-9

Google Scholar

[20] C.N.J. Wagner, Stacking faults by low-temperature cold work in copper and alpha brass, Acta Metall. 5 (1957) 427-434.

DOI: 10.1016/0001-6160(57)90060-3

Google Scholar

[21] J.B. Cohen, C.N.J. Wagner, Determination of twin fault probabilities from the diffraction patterns of fcc metals and alloys, J. Appl. Phys. 33 (1962) (2073).

DOI: 10.1063/1.1728897

Google Scholar

[22] T. Ungar, Microstructural parameters from X-ray diffraction peak broadening, Scripta Mater. 51 (2004) 777-781.

DOI: 10.1016/j.scriptamat.2004.05.007

Google Scholar

[23] M.A. Meyers, K.K. Chawla, Mechanical Metallurgy-Principles and Applications, Prentice Hall, Englewood Cliffs, NJ, (1984).

Google Scholar

[24] J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedus, T.G. Langdon, Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy, Mater. Sci. Eng. A. 527 (2010) 752-760.

DOI: 10.1016/j.msea.2009.08.071

Google Scholar

[25] Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T. Zhu, Simultaneously increasing the ductility and strength of Ultra-Fine-Grained pure copper, Adv. Mater. 18 (2006) 2949-2953.

DOI: 10.1002/adma.200601472

Google Scholar

[26] P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, Y.T. Zhu, Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening, Mater. Sci. Eng. A. 525 (2009).

DOI: 10.1016/j.msea.2009.06.030

Google Scholar

[27] C. Zener, J.H. Hollomon, Effect of strain-rate on plastic flow of steel, J. Appl. Phys. 15 (1944) 22-32.

DOI: 10.1063/1.1707363

Google Scholar