Influence of Austenite Grain Size on Martensite Start Temperature of Nb-V-Ti Microalloyed Ultra-High Strength Steel

Article Preview

Abstract:

In order to investigate the effect of austenite grain size on martensite start temperature of Nb-V-Ti micro-alloyed ultra-high strength steel, the phase transformation features of Nb-V-Ti micro-alloyed steel was investigated. It has been found that martensite start temperature increased with the increase of austenite grain size as a consequence of the increase of austenitizing temperature. Based on microstructure observation, two types of MX carbonitrides with different compositions and morphologies have been identified. With the increase of the austenite grain size, both the volume fraction of precipitates and the dislocation density decreased, which may be induced by the strengthening of the austenite matrix directly and increasing the resistance of austenite to plastic deformation. Hence, the increase of martensite start temperature could be attributed to a decrease in volume fraction of precipitates and dislocation density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

624-632

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Barbier, Extension of the martensite transformation temperature relation to larger alloying elements and contents, Adv. Eng. Mater. 16(2014)122-127.

DOI: 10.1002/adem.201300116

Google Scholar

[2] T. Cool, H.K.D.H. Bhadeshia, Prediction of Martensite Start Temperature of Power Plant Steels, Materials Science and Technology. 12(1996)40-44.

DOI: 10.1179/mst.1996.12.1.40

Google Scholar

[3] G.B. Olson, M. Cohen, A General mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations, Metall. Trans. A 7A(1976)1905-(1913).

DOI: 10.1007/bf02659823

Google Scholar

[4] S.J. Lee, K.S. Park, Prediction of martensite start temperature in alloy steels with different grain sizes, Metall. Mater. Trans. A. 44(2013)3423.

DOI: 10.1007/s11661-013-1798-4

Google Scholar

[5] E. Rowland, S. Lyle, The application of Ms points to case depth measurement, Transactions of the American Society for Metals. 37(1946)27-47.

Google Scholar

[6] S. Kajiwara, Roles of dislocations and grain boundaries in martensite nucleation, Metall. Trans. A 17(1986)1693.

DOI: 10.1007/bf02817268

Google Scholar

[7] Y.L. Kang, Q.H. Han, X.M. Zhao, M.H. Cai, Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium, Materials and Design 44 (2013) 331-339.

DOI: 10.1016/j.matdes.2012.07.068

Google Scholar

[8] J.N. Moon, S.J. Kim, C.H. Lee, Effect of thermo-mechanical cycling on the microstructure and strength of lath martensite in the weld CGHAZ of HSLA steel, Mater. Sci. Eng. A. 528 (2011) 7658-7662.

DOI: 10.1016/j.msea.2011.06.067

Google Scholar

[9] L. Liu, Z.G. Yang, C. Zhang, et al. An in situ study on austenite memory and austenitic spontaneous recrystallization of a martensitic steel. Mater. Sci. Eng. A 527 (2010) 7204-7209.

DOI: 10.1016/j.msea.2010.07.083

Google Scholar

[10] M. Umemoto, W.S. Owen, Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in a iron-nickel and an iron-nickel-carbon alloy, Metall. Trans. 5 (1974) (2042).

DOI: 10.1007/bf02644497

Google Scholar

[11] A. Garci'a-Junceda, C. Capdevila, F.G. Caballero, C. Garci'a de Andre's, Dependence of martensite start temperature on fine austenite grain size, Scripta Mater. 58 (2008) 134-137.

DOI: 10.1016/j.scriptamat.2007.09.017

Google Scholar

[12] T. Mski, S. Shimooka, I. Tamura, The Ms temperature and morphology of martensite in Fe-31 Pct Ni-0. 23 Pct C alloy, Metall. Trans. 2 (1971) 2944-2945.

DOI: 10.1007/bf02813278

Google Scholar

[13] J.P. Hirth. The influence of grain boundaries on mechanical properties, Metall. Trans. 3 (1972) 3047.

Google Scholar

[14] B. Dutta, E. J. Palmier, C. M. Sellars, Modelling the kinetics of strain induced precipitation in nb microalloyed steels, Acta mater. 49(2001)785-794.

DOI: 10.1016/s1359-6454(00)00389-x

Google Scholar

[15] Q.F. Wang, C.Y. Zhang, R.X. Li, J.Z. Gao, M.Z. Wang, F.C. Zhang, Characterization of the microstructures and mechanical properties of 25CrMo48V martensitic steel tempered at different times, Mater. Sci. Eng. A. 559 (2013) 130-134.

DOI: 10.1016/j.msea.2012.08.049

Google Scholar

[16] J.N. Moon, J.B. Lee, C.H. Lee, Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel, Mater. Sci. Eng. A. 459 (2007) 40-46.

DOI: 10.1016/j.msea.2006.12.073

Google Scholar

[17] J.N. Moon, S.H. Kim, J.I. Jang, J.B. Lee, C.H. Lee, Orowan strengthening effect on the nanoindentation hardness of the ferrite matrix in microalloyed steels, Mater. Sci. Eng. A. 487 (2008) 552-557.

DOI: 10.1016/j.msea.2007.10.046

Google Scholar

[18] Z.Q. Liu, G. Miyamoto, Z.G. Yang, C. Zhang, et al. Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys. Acta mater. 61(2013) 3120-3129.

DOI: 10.1016/j.actamat.2013.02.003

Google Scholar

[19] Z.X. Xia, C. Zhang, Z.G. Yang. Control of precipitation behavior in reduced activation steels by intermediate heat treatment. Mater. Sci. Eng. A 528(2011)6764-6768.

DOI: 10.1016/j.msea.2011.05.084

Google Scholar

[20] Z.D. Li, Z.G. Yang, C. Zhang, et al. Influence of austenite deformation on ferrite growth in a Fe-C-Mn alloy[J]. Mater. Sci. Eng. A 527(2010)4406-4411.

DOI: 10.1016/j.msea.2010.03.092

Google Scholar