Effects of High-Energy Ball Milling Time on the Sintering Process of FeSe Superconductors

Article Preview

Abstract:

FeSe superconducting bulks were prepared with high energy ball milling (HEBM) aided sintering process, within which process, tetragonal β-FeSe superconducting phase could be formed directly with one step sintering process, and the formation of hexagonal δ-FeSe non-superconducting phase was effectively avoided. The influences of HEBM time on the sintering process of FeSe bulks were systematically investigated. With different HEBM time, the phase composition and morphology of precursor powders changed correspondingly, which thus influenced the final phase composition and superconducting properties of FeSe superconducting bulks. Due to the formation of FeSe bulks with larger tetragonal phase content and higher superconducting transition temperature, HEBM time of 6.0 h was recognized as the optimal parameter. Shorter HEBM time could lead to the insufficient decrease of particle size and low density. While longer HEBM time caused the formation of amorphous hexagonal δ-FeSe, which crystallized during sintering process. Thus no more tetragonal FeSe could be obtained. The FeSe superconducting bulk with the critical temperature Tc(onset) of 8.0 K was obtained with the HEBM time of 6 h, and sintering temperature of 700 oC for 12 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

657-663

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, WU M K Superconductivity in the PbO-type structure a-FeSe Proc. Natl. Acad Sci USA 2008; 105: 14262-14264.

DOI: 10.1073/pnas.0807325105

Google Scholar

[2] Wang W, Li J, Yang J, Gu C, Chen X, Zhang Z, Zhu X, Lu W, Wang H-B, Wu P-H, Yang Z, Tian M, Zhang Y, Moshchalkov V V Scotch tape induced strains for enhancing superconductivity of FeSe0. 5Te0. 5 single crystals Applied Physics Letters 2014; 105: 232602.

DOI: 10.1063/1.4903922

Google Scholar

[3] Sun Y, Tsuchiya Y, Yamada T, Taen T, Pyon S, Shi Z X, Tamegai T Chalcogen (O2, S, Se, Te) atomosphere annealing induced bulk superconductivity in Fe1+yTe1-xSex single crystal Physica C 2014; 504: 12-15.

DOI: 10.1016/j.physc.2014.02.022

Google Scholar

[4] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G Electronic and magnetic phase diagram of β-Fe1. 01Se with superconductivity at 36. 7 K under pressure Nat. Mater. 2009; 8: 630-633.

DOI: 10.1038/nmat2491

Google Scholar

[5] He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K, Zhou X J Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films Nat. Mater. 2013; 12: 605-610.

DOI: 10.1038/nmat3648

Google Scholar

[6] Zhang W H, Li Z, Li F S, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, Xue Q K Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO3 substrates Phys. Rev. B 2014; 89: 060506(R).

DOI: 10.1103/physrevb.89.060506

Google Scholar

[7] Liu D F, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q K, Zhou X J Electonic origin of high-temperature superconductivity in single-layer FeSe superconductor Nature Commun. 2012; 3: 931.

DOI: 10.1038/ncomms1946

Google Scholar

[8] Fang M H, Yang J H, Balakirev F F, Kohama Y, Singleton J, Qian B, Mao Z Q, Wang H D, Yuan H Q Weak anisotropy of the superconducting upper critical field in Fe1. 11Te0. 6Se0. 4 single crystals Phys. Rev. B 2010; 81: 020509.

Google Scholar

[9] Ma Y W Progress in wire fabrication of iron-based superconductors Supercond. Sci. Technol. 2012; 25: 113001.

DOI: 10.1088/0953-2048/25/11/113001

Google Scholar

[10] Si W D, Han S J, Shi X Y, Ehrlich S N, Jaroszynski J, Goyal A, Li Q High current superconductivity in FeSe0. 5Te0. 5-coated conductors at 30 Tesla Nature Commun. 2013; 4: 1347.

DOI: 10.1038/ncomms2337

Google Scholar

[11] Si W D, Zhou J, Jie Q, Dimitrov I, Solovyov V, Johnson P D, Jaroszynski J, Matias V, Sheehan C, Li Q Iron-chalcogenide FeSe0. 5Te0. 5 coated superconducting tapes for high field applications Appl. Phys. Lett. 2011; 98: 262509.

DOI: 10.1063/1.3606557

Google Scholar

[12] Gao Z S, Qi Y P, Wang L, Wang D L, Zhang X P, Yao C, Ma Y W Superconducting properties of FeSe wires and tapes prepared by a gas diffusion technique Supercond. Sci. Technol. 2011; 24: 065022.

DOI: 10.1088/0953-2048/24/6/065022

Google Scholar

[13] Mizuguchi Y, Deguchi K, Tsuda S, Yamaguchi T, Takeya H, Kumakura H, Takano Y Fabrication of the iron-based superconducting wire using Fe(Se, Te) Appl. Phys. Express 2009; 2: 083004.

DOI: 10.1143/apex.2.083004

Google Scholar

[14] Mizuguchi Y, Izawa H, Ozaki T, Takano Y, Miura O Transport properties of the single- and 3-core Fe-Se wires fabricated by a novel chemical-transformation PIT process Supercond. Sci. Technol. 2011; 24: 125003.

DOI: 10.1088/0953-2048/24/12/125003

Google Scholar

[15] Ozaki T, Deguchi K, Mizuguchi Y, Kawasaki Y, Tanaka T, Yamaguchi T, Tsuda S, Kumakura H, Takano Y Transport properties and microstructure of mono- and seven-core wires of FeSe1-xTex superconductor produced by the Fe-diffusion powder-in-tube method Supercond. Sci. Technol. 2011; 24: 105002.

DOI: 10.1088/0953-2048/24/10/105002

Google Scholar

[16] Okamoto H The Fe-Se (Iron-Selenium) System J. Phase Equilib. 1991; 12: 383-389.

Google Scholar

[17] Schuster W, Mikler H, Komarek K L Transition metal-Chalcogen systems, VII: The iron-selenium phase diagram Monatsch. Chem. 1979; 110: 1153-1170.

DOI: 10.1007/bf00910963

Google Scholar

[18] Izawa H, Mizuguchi Y, Ozaki T, Takano Y, Miura O Evolution of tetragonal phase in the FeSe wire fabricated by a novel chemical-transformation PIT process Jpn. J. Appl. Phys. 2012; 51: 010101.

DOI: 10.7567/jjap.51.010101

Google Scholar

[19] Rahman G, Kim I G, Freeman A J Ab initio prediction of pressure-induced structural phase transition of superconducting FeSe J. Phys.: Condens. Matter 2012; 24: 095502.

DOI: 10.1088/0953-8984/24/9/095502

Google Scholar

[20] Svendsen S R Decomposition pressures and standard enthalpy of formation for the iron selenides FeSe, Fe7Se8, Fe3Se4 and FeSe2 Acta Chemica Scandinavica 1972; 26: 3757-3774.

DOI: 10.3891/acta.chem.scand.26-3757

Google Scholar

[21] Ding Q P, Mohan S, Tsuchiya Y, Taen T, Nakajima Y, Tamegai T Magneto-optical imaging and transport properties of FeSe superconducting tapes prepared by diffusion method Supercond. Sci. Technol. 2011; 25: 025003.

DOI: 10.1088/0953-2048/25/2/025003

Google Scholar

[22] Ozaki T, Deguchi K, Mizuguchi Y, Kawasaki Y, Tanaka T, Yamaguchi H, Kumakura H, Takano Y Fabrication of binary FeSe superconducting wires by novel diffusion process J. Appl. Phys. 2011; 111: 112620.

DOI: 10.1063/1.4726243

Google Scholar

[23] Sala A, Palenzona A, Bernini C, Caglieris F, Cimberle M R, Ferdeghini C, Lamura G, Martinelli A, Pani M, Putti M The role of Fe deficiency in FeySe0. 5Te0. 5 samples prepared by a melting process Physica C 2013; 494: 69-73.

DOI: 10.1016/j.physc.2013.05.026

Google Scholar

[24] Zhang S N, Liu J X, Feng J Q, Wang Y, Ma X B, Li C S, Zhang P X Fabrication Mechanism of FeSe Superconductors with High-Energy Ball milling Aided Sintering Process Mater. Chem. Phys. 2015; submitted.

DOI: 10.1016/j.matchemphys.2015.08.028

Google Scholar

[25] Sun W Z Y, Zhang S, Zhuang J, Yuan F, Li X, Shi Z, Yamada T, Tsuchiya Y, Tamegai T Bulk Superconductivity in Fe1+yTe0. 6Se0. 4 Induced by Removal of Excess Fe J. Phys. Soc. Jap. 2014; 83: 064704.

DOI: 10.7566/jpsj.83.064704

Google Scholar

[26] Sun Y, Tsuchiya Y, Taen T, Yamada T, Pyon S, Sugimoto A, Ekino T, Shi Z X Dynamics and mechanism of oxygen annealing in Fe1+yTe0. 6Se0. 4 single crystal Sci. Rep. 2014; 4: 4585.

DOI: 10.1038/srep04585

Google Scholar