Structural and Magnetic Properties of Cr- and Fe-Doped CeO2 Nanoparticles Prepared by Sol-Gel Method

Article Preview

Abstract:

A study of the structural and magnetic properties of Cr-and Fe-doped CeO2 nanoparticles produced by the sol–gel-based method was undertaken. The crystal structure and phase, morphology, and magnetic properties of the sample were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy (Raman) and physical property measurement system (PPMS). XRD and Raman studied showed that Cr-and Fe-doped did not change CeO2 original cubic fluorite crystal structure, and no ferromagnetic secondary phase was observed. SEM images showed that Cr-and Fe-doped CeO2 nanoparticles were spherical, uniform size, and good dispersion. The particle size was about 20 nm. The magnetic measurements showed that the Cr-and Fe-doped CeO2 nanoparticles presented ferromagnetic behavior at 10 and 300 K, indicating the Curie temperature was above room temperature. The magnetization diminished with the increase of the temperature. The saturation magnetization and coercivity of Fe-doped CeO2 nanoparticles were higher than that of Cr-doped CeO2 nanoparticles. Combined with the results of XRD and Raman, the ferromagnetic behavior can be attributed to the intrinsic properties of Cr-and Fe-doped CeO2 nanostructures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

682-687

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ohno, H. Munekata, T. Penney, S. Von Molnar, and L.L. Chang, Magnetotransport properties of p-type (In, Mn)As diluted magnetic III–V semiconductors, Phys. Rev. Lett. 68(1992) 2664–2667.

DOI: 10.1103/physrevlett.68.2664

Google Scholar

[2] N.V. Skorodumova, R. Ahuja, S.I. Simak, A.I. Abrikosov, B. Johansson, B.I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Phys. Rev. B 64(2001) 115108.

Google Scholar

[3] V. Fernandes, J.J. Klein, N. Mattoso, D.H. Mosca, E. Silveira, E. Ribeiro, W.H. Schreiner, J. Varalda, A.J.A. de Oliveira, Room temperature ferromagnetism in Co-doped CeO2 films on Si(001), Phys. Rev. B 75 (2007) 21304R.

DOI: 10.1103/physrevb.75.121304

Google Scholar

[4] P. C. A. Brito, D. A. A. Santos, J. G. S. Duque, M. A. Macêdo, Structural and magnetic study of Fe-doped CeO2, Phys. B: Condens. Matter 405(2010) 1821–1825.

DOI: 10.1016/j.physb.2010.01.054

Google Scholar

[5] Y.Q. Song, H.W. Zhang, Q.Y. Wen, Y.X. Li, J.Q. Xiao, Room-temperature ferromagnetism of Co-doped CeO2 thin films on Si(111) substrates, Chin. Phys. Lett. 24(2007) 218–221.

DOI: 10.1088/0256-307x/24/1/059

Google Scholar

[6] Y.N. Ou, G.R. Li, J.H. Liang, Z.P. Peng, Y.X. Tong, Ce1−xCoxO2-delta nanorods grown by electrochemical deposition and their magnetic properties, J. Phys. Chem. C 114(2010) 13509–13514.

Google Scholar

[7] S. Phokha, S. Pinitsoontorn, S. Maensiri, Room-temperature ferromagnetism in Co-doped CeO2 nanospheres prepared by the polyvinylpyrrolidone-assisted hydrothermal method, J. Appl. Phys. 112(2012) 113904.

DOI: 10.1063/1.4766273

Google Scholar

[8] S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y.P. arporn, S. Maensiri, Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method, Nanoscale Res. Lett. 7(2012) 425.

DOI: 10.1186/1556-276x-7-425

Google Scholar

[9] M.C. Dimri, H. Khanduri, H. Kooskora, J. Subbi, I. Heinmaa, A. Mere, J. Krustok, R. Stern, Ferromagnetism in rare earth doped cerium oxide bulk samples, Phys. Status Solidi A 209(2012) 353–358.

DOI: 10.1002/pssa.201127403

Google Scholar

[10] N. Paunovic' , Z.D. Mitrovic, R. Scurtu, S. Aškrabic, M. Prekajski, B. Matovic, Z.V. Popovic, Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals, Nanoscale 4(2012) 5469–5476.

DOI: 10.1039/c2nr30799e

Google Scholar

[11] J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, et al., Carrier-controlled ferromagnetism in transparent oxide semiconductors, Nat. Mate. 5(2006) 298.

Google Scholar

[12] A. Kaminski, S. Das Sarma, Polaron percolation in diluted magnetic semiconductors, Phys. Rev. Lett. 88(2002) 247202.

DOI: 10.1103/physrevlett.88.247202

Google Scholar

[13] D.L. Priour, Jr. and S. Das Sarma, Phase diagram of the disordered RKKY model in dilute magnetic semiconductors, Phys. Rev. Lett. 97(2006) 127201.

DOI: 10.1103/physrevlett.97.127201

Google Scholar

[14] B.D. Yuhas, F. Fakra, M.A. Marcus, P.D. Yang, Probing the local coordination environment for transition metal dopants in zinc oxide nanowires, Nano Lett. 7(2007) 905-909.

DOI: 10.1021/nl0626939

Google Scholar

[15] I. Kosacki, V. Petrovsky, H.U. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films, J. Am. Ceram. Soc. 85(2002) 2646-2650.

DOI: 10.1111/j.1151-2916.2002.tb00509.x

Google Scholar

[16] J.R. McBride, K.C. Hass, B.D. Poindexter, et al., Raman and x-ray studies of Ce1-xRexO2-y, where RE=La, Pr, Nd, Eu, Gd, and Tb, J. Appl. Phys. 76(1994) 2435-2441.

DOI: 10.1063/1.357593

Google Scholar

[17] K. Ohhara, N. Ishikawa, S. Sakai, Y. Matsumoto, O. Michikami, Y. Ohta, Oxygen defects created in CeO2 irradiated with 200 MeV Au ions, Nucl. Instrum. Methods B 267(2009) 973-975.

DOI: 10.1016/j.nimb.2009.02.034

Google Scholar

[18] J.M.D. Coey, M. Venkateshan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2005) 173–179.

DOI: 10.1038/nmat1310

Google Scholar