Chemical Bonds Properties and Spontaneous Polarization of Orthogonal SrBi2Ta2O9 Crystals

Article Preview

Abstract:

The bonds structure, atomic coordination situation and local cluster structure in SrBi2Ta2O9 were analyzed by means of the Atomic Environment Calculation (AEC), and then the SrBi2Ta2O9 crystal was decomposed into 20 pseudo-binary crystals with the crystal decomposition method. The chemical bonds properties, such as effective valence electron density and iconicity of the individual bond were calculated by the dielectric chemical bonds theory. And the correlation between chemical bonds properties and spontaneous polarization of the bismuth layered ferroelectrics was established. Finally, the spontaneous polarization in ferroelectric SrBi2Ta2O9 and other relevant ferroelectrics were calculated, which are in good agreement with the experimental values and other theoretical calculated values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

688-695

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Aurivillius B. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9, J. Arkiv for kemi. 1(5) (1950) 463-480.

Google Scholar

[2] Newnham R E, Wolfe R W, Dorrian J F. Structural basis of ferroelectricity in bismuth titanate family, J. Materials Research Bulletin. 6(10) (1971) 1029-1039.

DOI: 10.1016/0025-5408(71)90082-1

Google Scholar

[3] Frit B, Mercurio J P. The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures, J. Journal of alloys and compounds. 188 (1992) 27-35.

DOI: 10.1016/0925-8388(92)90639-q

Google Scholar

[4] Chen Xiaochen. Spontaneous polarization bonds model of ferroelectrics—Calculation of spontaneous polarization Ps of perovskite, tungsten bronze ferroelectrics, J. Chinese Science Bulletin. 3 (1982) 153-155.

Google Scholar

[5] King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids, J. Physical Review B. 47(3) (1993) 1651-1654.

DOI: 10.1103/physrevb.47.1651

Google Scholar

[6] Resta R, Posternak M, Baldereschi A. Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3, J. Physical review letters. 70(7) (1993) 1010-1013.

DOI: 10.1103/physrevlett.70.1010

Google Scholar

[7] Shimakawa Y, Kubo Y, Nakagawa Y, S. Goto, T. Kamiyama, H. Asano, F. Izumi. Crystal structure and ferroelectric properties of ABi2Ta2O9 (A= Ca, Sr, and Ba), J. Physical Review B. 61(10) (2000) 6559-6564.

Google Scholar

[8] Hervoches C H, Snedden A, Riggs R, Kilcoyne S H, Manuel P, LightfootI P. Structural Behavior of the Four-Layer Aurivillius-Phase Ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15, J. Journal of Solid State Chemistry. 164(2) (2002) 280-291.

DOI: 10.1006/jssc.2001.9473

Google Scholar

[9] Stachiotti M G, Rodriguez C O, Ambrosch-Draxl C. First-principles investigation of SrBi2Ta2O9, J. Ferroelectrics. 237(1) (2000) 49-56.

DOI: 10.1080/00150190008216231

Google Scholar

[10] Ke H, Wang W, Zheng Z X, Tang C L. First-principles study of spontaneous polarization in SrBi2Ta2O9, J. Journal of Physics: Condensed Matter. 23(1) (2011) 015901.

Google Scholar

[11] Phillips J C, Van Vechten J A. Dielectric classification of crystal structures, ionization potentials, and band structures, J. Physical Review Letters. 22(14) (1969) 705-708.

DOI: 10.1103/physrevlett.22.705

Google Scholar

[12] Phillips J C, Van Vechten J A. Nonlinear optical susceptibilities of covalent crystals, J. Physical Review. 183(3) (1969) 709-711.

DOI: 10.1103/physrev.183.709

Google Scholar

[13] Phillips J C, Van Vechten J A. Charge redistribution and piezoelectric constants, J. Physical Review Letters. 23(19) (1969) 1115-1117.

DOI: 10.1103/physrevlett.23.1115

Google Scholar

[14] Van Vechten J A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant, J. Physical Review. 182(3) (1969) 891-905.

DOI: 10.1103/physrev.182.891

Google Scholar

[15] Phillips J C. Ionicity of the chemical bond in crystals, J. Reviews of Modern Physics. 42(3) (1970) 317-356.

DOI: 10.1103/revmodphys.42.317

Google Scholar

[16] Levine B F. d-Electron effects on bond susceptibilities and ionicities, J. Physical Review B. 7(6) (1973) 2591-2600.

Google Scholar

[17] Levine B F. Bond susceptibilities and ionicities in complex crystal structures, J. The Journal of Chemical Physics. 59(3) (1973) 1463-1486.

DOI: 10.1063/1.1680204

Google Scholar

[18] Zhang S Y. Investigation of chemical bonds on complex crystals, J. Chinese Journal of chemical physics. 4(2) (1991) 109-115.

Google Scholar

[19] Gao F, He J, Wu E, et al. Hardness of covalent crystals, J. Physical review letters. 91(1) (2003) 015502.

Google Scholar

[20] Gao Faming, Gao Lihua. Dielectric theory of chemical bond in crystals and its application, J. Journal of YanShan University. 35(3) (2011) 189-197.

Google Scholar

[21] Zhang Siyuan, Xue Dongfeng. Chemical Bonds of complex structure crystals and nonlinear optical effect, J. Journal of Graduate School, Academia Sinica. 17(1) (2000) 36-42.

Google Scholar

[22] Gao L, Gao F. Chemical bond properties and hardness estimation of rare earth garnets, J. Materials Chemistry and Physics. 113(1) (2009) 145-149.

DOI: 10.1016/j.matchemphys.2008.07.069

Google Scholar

[23] LI S C. AEC: A New Tool for EET, TFDC and Crystal Formula[C]. Materials Science Forum. 689 (2011) 245-254.

DOI: 10.4028/www.scientific.net/msf.689.245

Google Scholar

[24] Shimakawa Y, Kubo Y, Nakagawa Y, et al. Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0. 8Bi2. 2Ta2O9, J. Applied physics letters. 74(13) (1999)1904-(1906).

DOI: 10.1063/1.123708

Google Scholar

[25] Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, J. Acta Crystallographica Section B: Structural Science. 41(4) (1985) 244-247.

DOI: 10.1107/s0108768185002063

Google Scholar

[26] Amorín H, Bdikin I K, Kholkin A L, et al. Growth and characterization of ferroelectric SrBi2Ta2O9 single crystals via high-temperature self-flux solution method, J. Physics of the Solid State. 48(3) (2006) 537-543.

DOI: 10.1134/s1063783406030206

Google Scholar

[27] Rae A D, Thompson J G, Withers R L. Structure refinement of commensurately modulated bismuth strontium tantalate, Bi2SrTa2O9, J. Acta Crystallographica Section B: Structural Science. 48(4) (1992) 418-428.

DOI: 10.1107/s0108768192001654

Google Scholar

[28] Irie H, Miyayama M, Kudo T. Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals, J. Journal of Applied Physics. 90(8) (2001) 4089-4094.

DOI: 10.1063/1.1389476

Google Scholar

[29] Irie H, Miyayama M. Dielectric and ferroelectric properties of SrBi4Ti4O15 single crystals, J. Applied Physics Letters. 79(2) (2001) 251-253.

DOI: 10.1063/1.1384480

Google Scholar