Microstructure and Magnetic Properties of RE2.28Fe13.58B1.14 Alloys

Article Preview

Abstract:

The rare-earth (RE) permanent magnets based on Nd2Fe14B with excellent magnetic properties have been widely used in industrial applications. In this work, the crystal structure, microstructure and magnetic properties of Nd2.28Fe13.58B1.14, Ce2.28Fe13.58B1.14 and Pr2.28Fe13.58B1.14 alloys prepared by arc-melting were investigated. The results show that all alloys are single phase with tetragonal Nd2Fe14B-type (space group P42/mnm). The Curie temperatures (Tc) of RE2.28Fe13.58B1.14 (RE=Nd, Ce, Pr) alloys are 583 K, 423 K and 557 K, respectively. On the other hand, the coercivities of Nd2.28Fe13.58B1.14 and Pr2.28Fe13.58B1.14 alloys are about 1.05 T and 1.23 T, respectively, while that of Ce2.28Fe13.58B1.14 alloy is only about 0.25 T due to the poor squareness of hysteresis loop. Meanwhile, the saturation magnetizations of Nd2.28Fe13.58B1.14 and Pr2.28Fe13.58B1.14 alloys are about 135 emu/g and 113 emu/g, respectively, while that of Ce2.28Fe13.58B1.14 alloy is about 97 emu/g. It was indicated that the Curie temperatures and magnetic properties of RE2.28Fe13.58B1.14 alloys with the same crystal structure are dependent on light rare earth elements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

709-714

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Guo, Y.H. Liu, B.C. Chen, C.J. Yan, R.J. Chen, D. Lee, A. Yan, J. Appl. Phys. 111 (2012) 07A740.

Google Scholar

[2] S. Sugimoto, J. Phys. Appl. Phys. 44 (2011) 064001.

Google Scholar

[3] N. Poudyal, J.P. Liu, J. Phys. Appl. Phys. 46 (2013) 043001.

Google Scholar

[4] C.D. Fuerst, T.W. Capehart, F.E. Pinkerton, J.F. Herbst, J. Magn. Magn. Mater. 139 (1995) 359-363.

Google Scholar

[5] K. Loëwe, C. Brombacher, M. Katterb, O. Gutfleisch. Acta. Mater. 83 (2015) 248-255.

Google Scholar

[6] O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821-842.

Google Scholar

[7] M. Komuro, Y. Satsu, H. Suzuki, IEEE Trans. Magn. 46 (2010) 3831-3833.

Google Scholar

[8] H. Nakamura, K. Hirota, T. Ohashi, T. Minowa, J. Phys. Appl. Phys. 44 (2011) 064003.

Google Scholar

[9] K. Kobayashi, K. Urushibata, T. Matsushita, S. Sakamoto, S. Suzuki, J. Alloys Compd. 615 (2014) 569-575.

Google Scholar

[10] X.F. Zhang, M.F. Shi, P.Z. Li, Y.F. Dai, Q. Ma, Y. Li, Chin. Rare Earths 34 (2013) 12-16.

Google Scholar

[11] S.J. Wu, X.Q. Bao, D.L. Xiang, J. Zhu, and X.U. Gao, J. Univ. Sci. Technol. Beijing 35 (2013) 777-784.

Google Scholar

[12] X.Q. Zhou, S.Y. Liu, X.K. Lu, M. Zhang, Y. Ding, Electron. Compon. Mater. 32 (2013) 25-27.

Google Scholar

[13] S.J. Wu, X.Q. Bao, D.L. Xiang, J. Zhu, X. U. Gao, J. Univ. Sci. Technol. Beijing 35 (2013) 77-787.

Google Scholar

[14] I. Ahmad, H.A. Davies, M. Kanwal, J. Magn. Magn. Mater. 324 (2012) 3971-3974.

Google Scholar

[15] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi, J. Appl. Phys. 61 (1986) 363-369.

Google Scholar

[16] X.C. Wang, M.G. Zhu, W. Li, L.Y. Zheng, D.L. Zhao, X. Du, A. Du, Electron. Mater. Lett. 1 (2015) 109-112.

Google Scholar

[17] Z.B. Li, B.G. Shen, M. Zhang, F.X. Hu, J.R. Sun, J. Alloys Compd. 628 (2015) 325-328.

Google Scholar

[18] Eric J. Skoug, M.S. Meyer, F.E. Pinkerton, Misle M. Tessema, Daad Haddad, J.F. Herbst, J. Alloys Compd. 574 (2013) 552-555.

DOI: 10.1016/j.jallcom.2013.05.101

Google Scholar

[19] T.H. Kim, S.R. Lee, S. Namkumg, T.S. Jang, J. Alloys Compd. 537 (2012) 261-268.

Google Scholar

[20] J.F. Herbst, J.J. Croat, F.E. Pinkerton, Phys. Rev. B 29 (1986) 4176-4178.

Google Scholar

[21] J.F. Herbst, W.B. Yelon, J. Magn. Magn. Mater. 54 (1986) 570-572.

Google Scholar

[22] J.F. Herbst, W.B. Yelon, J. Appl. Phys. 57 (1985) 2343-2345.

Google Scholar

[23] E. Burzo, Rep. Prog. Phys. 61 (1998) 1099-1266.

Google Scholar