Effect of Modified NanoSiO2 Agents on the Morphologies and Performances of UHMWPE Microporous Membrane via Thermally Induced Phase Separation

Article Preview

Abstract:

The effects of Modified NanoSiO2 Agents on the morphology and performance of ultra-high-molecular weight polyethylene (UHMWPE) microporous membranes via thermally induced phase separation were investigated in this work. The NanoSiO2 was surface modified by silane coupling agent KH570 (KH570-NanoSiO2). Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) were performed to obtain crystallization of UHMWPE/white oil/ KH570-NanoSiO2 doped system. The morphology and performance of the prepared UHMWPE microporous membranes were characterized with scanning electron microscopy (SEM) and microfiltration experiments. The results showed that the morphology of UHMWPE membrane could be disturbed by KH570-NanoSiO2. Porosity and the rejection of Bovine serum albumin (BSA) of the blend membrane increased with increasing concentration of Modified NanoSiO2, while the water flux slightly decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

726-732

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liu S, Zhou C, Yu W. Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane [J]. Journal of Membrane Science, 2011, 379(1-2): 268–278.

DOI: 10.1016/j.memsci.2011.05.073

Google Scholar

[2] D.R. Lloyd, S.S. Kim, K.E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid–liquid phase separation, J. Membr. Sci. 64 (1991) 1–11.

DOI: 10.1016/0376-7388(91)80073-f

Google Scholar

[3] M.R. Caplan, C.Y. Chiang, D.R. Lloyd, L.Y. Yen, Formation of microporous Teflon® PFA membranes via thermally induced phase separation, J. Membr. Sci. 130 (1997) 219–237.

DOI: 10.1016/s0376-7388(97)00027-6

Google Scholar

[4] S.P. Nunes, T. Inoue, Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation, J. Membr. Sci. 111 (1996)93–103.

DOI: 10.1016/0376-7388(95)00281-2

Google Scholar

[5] C y. Chiang, D.R. Lloyd, Effects of process conditions on the formation of microporous membranes via solid–liquid thermally induced phase separation, J. Porous Mater. 2 (1995) 273–285.

DOI: 10.1007/bf00489808

Google Scholar

[6] Castro A J. Methods for making microporous products: U.S. Patent 4, 247, 498[P]. 1981-1-27.

Google Scholar

[7] van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1–2): 1–31.

DOI: 10.1016/0376-7388(96)00088-9

Google Scholar

[8] H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, N. Kubota, Preparation of polyethylene hollow fiber membrane via thermally induced phase separation, J. Membr. Sci. 223 (2003) 119–126.

DOI: 10.1016/s0376-7388(03)00314-4

Google Scholar

[9] L. Shen, M. Peng, F. Qiao, J.L. Zhang, Preparation of microporous ultra high molecular weight polyethylene (UHMWPE) by thermally induced phase separation of a UHMWPE/liquid paraffin mixture, Chin. J. Polym. Sci. 26 (2008) 653–657.

DOI: 10.1142/s0256767908003394

Google Scholar

[10] H. Sun, K.B. Rhee, T. Kitano, S.I. Mah, High-density polyethylene (HDPE) hollow fiber membrane via thermally induced phase separation. I. Phase separation behaviors of HDPE–liquid paraffin (LP) blends and its influence on the morphology of the membrane, J. Appl. Polym. Sci. 73 (1999).

DOI: 10.1002/(sici)1097-4628(19990912)73:11<2135::aid-app9>3.0.co;2-x

Google Scholar

[11] Gu MH, Zhang J, Wang XL, Ma WZ (2006) Crystallization behavior of PVDF in PVDF-DMP system via thermally induced phase separation. J Appl Polym Sci 102(4): 3714–3719.

DOI: 10.1002/app.24531

Google Scholar

[12] Lin YK, Tang YH, Ma HY, Yang J, Tian Y, Ma WZ, Wang XL (2009) Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation. J Appl Polym Sci 114(3): 1523–1528.

DOI: 10.1002/app.30622

Google Scholar

[13] Yang J, Li DW, Lin YK, Wang XL, Tian F, Wang Z (2008) Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation. J Appl Polym Sci 110(1): 341–347.

DOI: 10.1002/app.28606

Google Scholar

[14] Chan C M, Wu J, Li J X, et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer, 2002, 43(10): 2981–2992.

DOI: 10.1016/s0032-3861(02)00120-9

Google Scholar

[15] Zhao H, Li R K Y. A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites[J]. Polymer, 2006, 47(9): 3207-3217.

DOI: 10.1016/j.polymer.2006.02.089

Google Scholar

[16] Nguyen V G, Thai H, Mai D H, et al. Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites[J]. Composites Part B Engineering, 2013, 45(1): 1192–1198.

DOI: 10.1016/j.compositesb.2012.09.058

Google Scholar

[17] Gu, M. -H.; Zhang, J.; Wang, X. -L.; Tao, H. -J.; Ge, L. Formation of poly (vinylidene fluoride) (PVDF) membranes via thermally induced phase separation Desalination 2006, 192, 160.

DOI: 10.1016/j.desal.2005.10.015

Google Scholar