High Dielectric Constant of Silver Nanowires–Epoxy Composites

Article Preview

Abstract:

Silver nanowires–epoxy composites were prepared via cryomilling dispersion and hot-press forming process. The microstructure of the silver nanowires was studied by SEM. Dependence of dielectric properties of the composites on volume fraction of silver nanowires and frequency was investigated RF impedance material analyzer. The percolation threshold of the composites was 0.16, the value of the dielectric constant of the composite was as high as 100.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-12

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Njuguna, K. Pielichowski, J. R. Alcock. Epoxy-Based Fibre Reinforced Nanocomposites[J]. Advanced Engineering Materials. 9(2007) 835-847.

DOI: 10.1002/adem.200700118

Google Scholar

[2] A. Leszczyńska, J. Njuguna, K. Pielichowski, et al. Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement[J]. Thermochimica Acta. 453(2007).

DOI: 10.1016/j.tca.2006.11.002

Google Scholar

[3] G. A. Gelves, B, Lin, U, Sundararaj, et al. Low electrical percolation threshold of silver and copper nanowires in polystyrene composites[J]. Advanced Functional Materials. 16(2006) 2423-2430.

DOI: 10.1002/adfm.200600336

Google Scholar

[4] W. Caseri. Nanocomposites of polymers and metals or semiconductors: historical background and optical properties[J]. Macromolecular Rapid Communications. 21(2000) 705-722.

DOI: 10.1002/1521-3927(20000701)21:11<705::aid-marc705>3.0.co;2-3

Google Scholar

[5] C. Sanchez, B. Julian, P. Belleville, et al. Applications of hybrid organic-inorganic nanocomposites[J]. Journal of Materials Chemistry. 15(2005) 3559-3592.

Google Scholar

[6] R. Popielarz, C. K. Chiang, R. Nozaki, et al. Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz[J]. Macromolecules. 34(2001) 5910-5915.

DOI: 10.1021/ma001576b

Google Scholar

[7] H. Windlass, P. M. Raj, D. Balaraman, et al. Polymer-ceramic nanocomposite capacitors for system-on-package (SOP) applications[J]. Advanced Packaging, IEEE Transactions on. 26(2003) 10-16.

DOI: 10.1109/tadvp.2003.811369

Google Scholar

[8] L. Qi, B. I. Lee, S. Chen, et al. High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielectrics[J]. Advanced Materials. 2005 17(2005) 1777-1781.

DOI: 10.1002/adma.200401816

Google Scholar

[9] Z. M. Dang, Y. H. Lin, C. W. Nan. Novel ferroelectric polymer composites with high dielectric constants[J]. Advanced Materials. 2003, 15(2003) 1625-1629.

DOI: 10.1002/adma.200304911

Google Scholar

[10] Z. M. Dang, L. Wang, Y. I. Yin, et al. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites[J]. Advanced Materials. 19(2007) 852-857.

DOI: 10.1002/adma.200600703

Google Scholar

[11] L. Wang, Z. M. Dang. Carbon nanotube composites with high dielectric constant at low percolation threshold[J]. Applied physics letters. 87(2005) 042903.

DOI: 10.1063/1.1996842

Google Scholar

[12] S.Y. Yang, C.C.M. Ma, C.C. Teng, Y.W. Huang, S.H. Liao, Y.L. Huang, H.W. Tien, T.M. Lee and K.C. Chiou: Carbon Vol. 48 (2010), p.592–603.

Google Scholar

[13] S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang C.C.M. Ma, S.M. Li and Y.S. Wang: Carbon. 3 (2011) 793-803.

Google Scholar

[14] Q. Hou, Z.C. Shi, R.H. Fan and L.C. Ju: Key Engineering Materials. 512(2012) 127-131.

Google Scholar

[15] Q. Hou, K.L. Yan, R.H. Fan, et al. Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites[J]. RSC Advances. 5(2015) 9472-9475.

DOI: 10.1039/c4ra15274c

Google Scholar