Progress in Conductive-Polymer Carbon Nanotube Composites

Article Preview

Abstract:

Carbon nanotube (CNT) has been widely used as a kind of conductive inorganic filler in composites due to its excellent mechanical properties, thermal properties and electrical properties. Unfortunately, a deal of CNT is needed because it tends to agglomerate in matrix polymers. And therefore the researchers need to explore appropriate methods to decrease the usage of CNT for its high price. This paper summaries the recent development progress in carbon nanotube filled conductive polymer composites, in aspects of the approaches how to reduce the usage of CNT and application of biodegradable CNT-polymer composites. In addition, the future developing research direction in conductive polymer composites filled with carbon nanotube was indicated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] H. Shirakama, E.J. Louis, A.G. MacDiarmid, et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x., J. Chem. Soc., Chem. Commun., 16(1977) 578-580.

DOI: 10.1039/c39770000578

Google Scholar

[3] C.K. Chiang, M.A. Druy, S.C. Gau, et al., Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x, J. Am. Chem. Soc. 100(1978) 1013-1015.

DOI: 10.1021/ja00471a081

Google Scholar

[4] Z.Q. Zhao, X.L. Chen, The Technology Application of the Conductive and Antistatic Polymer Materials, first ed., China Textile & Apparel Press, Beijing, (2006).

Google Scholar

[5] C.J. Yu, C. Masarapu, J.P. Rong, et al., Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms, Adv. Mater. 47(2009) 4793-4797.

DOI: 10.1002/adma.200901775

Google Scholar

[6] S. Nambiar, J.T. Yeow, Conductive polymer-based sensors for biomedical applications Biosens. Bioelectron. 26(2010) 1825-1832.

DOI: 10.1016/j.bios.2010.09.046

Google Scholar

[7] S.M. Shang, W. Zeng and X.M. Tao, High stretchable MWNTs/polyurethane conductive nanocomposites, J. Mater. Chem. 21(2011) 7274-7280.

DOI: 10.1039/c1jm10255a

Google Scholar

[8] K. T. Lau, D. Hui, The revolutionary creation of new advanced materials—carbon nanotube composites, Composites Part B 33(2002) 263-277.

DOI: 10.1016/s1359-8368(02)00012-4

Google Scholar

[9] X. Zhi, H.B. Zhang, Y.F. Liao, et al., Electrically conductive polycarbonate/carbon nanotube composites toughened with micron-scale voids, Carbon, 82(2015) 195-204.

DOI: 10.1016/j.carbon.2014.10.062

Google Scholar

[10] C. Feng, L.Y. Jiang, Investigation of uniaxial stretching effects on the electrical conductivity of CNT–polymer nanocomposites, J. Phys. D. Appl. Phys. 47(2014) 1-12.

DOI: 10.1088/0022-3727/47/40/405103

Google Scholar

[1] C. Feng, L.Y. Jiang, Micromechanics modeling of bi-axial stretching effects on the electrical conductivity of CNT-polymer composites, Int. J. Appl. Electrom., 7(2015) 1-21.

DOI: 10.1142/s1758825115400050

Google Scholar

[2] F. Gubbels, R. Jerome, E. Vanlathem,et al., Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem. Mater. 10(1998) 1227-1235.

DOI: 10.1021/cm970594d

Google Scholar

[13] A. Goldel, A. Marmur, G.R. Kasaliwal, et al., Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 44(2011) 6094-6102.

DOI: 10.1021/ma200793a

Google Scholar

[4] J. Chen, Study on preparation of conductive polymer blend composites through regulating the localization of carbon nanotubes, Graduate dissertation of Southwest Jiaotong university (2014).

Google Scholar

[5] A. Thess, R. Lee, P. Nikolaev, et al., Crystalline ropes of metallic carbon nanotubes, Science. 26(1996) 483-487.

Google Scholar

[6] X.W. Wu, J.Z. Xiao, F. Xia, et al., Dispersion methods and dispersion mechanism of carbon nanotubes, Materials Review 9(2011) 16-19.

Google Scholar

[7] V.K. Sachdev, S. Bhattacharya, K. Patel, et al., Electrical and EMI shielding characterization of multiwalled carbon nanotube/polystyrene composites, J. Appl. Polym. Sci. 24(2014) 1-9.

DOI: 10.1002/app.40201

Google Scholar

[8] L. Zonder, S. Mccarthy, F. Rios, et al., Viscosity ratio and interfacial tension as carbon nanotube distributing factors in melt-mixed blends of polyamide 12 and high-density polyethylene, Adv. Polym. Tech. 33(2014) 1-7.

DOI: 10.1002/adv.21427

Google Scholar

[9] S.B. Park, M.S. Lee, M. Park, Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites Carbon letters 15(2014) 117-124.

DOI: 10.5714/cl.2014.15.2.117

Google Scholar

[20] S. Gong, Z.H. Zhua, S.A. Meguid, Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes[J]. Polymer 56(2015) 498-506.

DOI: 10.1016/j.polymer.2014.11.038

Google Scholar

[21] B. Tian, The research progress of carbon nanotubes modified biodegradable polyester, Rubber & Plastics Resources Utilization 5(2014) 1-4.

Google Scholar

[22] Q.F. Dong, H.B. Li, L.Y. Zhang, et al., Research on preparation and properties of PLA/PBAT/ CNTs-COOH antistatic packaging material, China printing and packing study 2(2014) 54-59.

Google Scholar

[23] J. Alam, M. Alam, L.A. Dass, et al., Development of plasticized PLA/NH2-CNT nanocomposite: potential of NH2-CNT to improve electroactive shape memory properties, Polym. Composites 11(2014) 2129-2136.

DOI: 10.1002/pc.22875

Google Scholar