Stress Induced Martensitic Transformation in Ti-1023 Alloys

Article Preview

Abstract:

Mechanical behaviors of isothermal hot forged and solution treated Ti-1023 alloy with different initial microstructures were investigated. After heat treatment at 760°C and 820°C for 1 hour, Ti-1023 alloys mainly consisted of fine α particles and β phase with a large grain size. The CMWP (Convolution Multiple Whole Profile) analysis indicated that the dislocation density in Ti-1023 decreased with increasing heat treatment temperature. Ti-1023 alloy solution treated at 760°C showed high strength and large anisotropy in plasticity. Improved ductility was observed in the alloy with solution treatment at 820°C. Increasing work hardening rate related to stress induced martensite transformation was observed in Stage II of the work hardening rate curves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-225

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Akanuma, H. Matsumoto, S. Sato, A. Chiba, I. Inagaki, Y. Shirai, T. Maeda, Enhancement of athermal α" martensitic transformation in Ti–10V–2Fe–3Al alloy due to high-speed hot deformation, Scripta Mater., 67 (2012) 21-24.

DOI: 10.1016/j.scriptamat.2012.03.011

Google Scholar

[2] S.L. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, D. Dye, The evolution of microtexture and macrotexture during subtransus forging of Ti–10V–2Fe–3Al, Mater. Sci. Eng. A, 488 (2008) 8-15.

DOI: 10.1016/j.msea.2007.10.059

Google Scholar

[3] A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, H.L. Fraser, Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater., 60 (2012).

DOI: 10.1016/j.actamat.2011.10.008

Google Scholar

[4] Y. Ohmori, T. Ogo, K. Nakai, S. Kobayashi, Effects of ω-phase precipitation on β→α, α' transformations in a metastable β titanium alloy, Mater. Sci. Eng. A, 312 (2001) 182-188.

DOI: 10.1016/s0921-5093(00)01891-8

Google Scholar

[5] E. Sukedai, Y. Kitano, A. Ohnishi, Investigation of initial structures of aged ω-phase crystals in β-titanium alloys using high resolution electron microscopy, Micron, 28 (1997) 269-277.

DOI: 10.1016/s0968-4328(97)00035-8

Google Scholar

[6] Z. Zhou, M. Lai, B. Tang, H. Kou, H. Chang, Z. Zhu, J. Li, L. Zhou, Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys, Mater. Sci. Eng. A, 527 (2010) 5100-5104.

DOI: 10.1016/j.msea.2010.03.064

Google Scholar

[7] H. Ding, H. Ding, C. -l. Qiu, Z. -y. Tang, J. -m. Zeng, P. Yang, Formability of TRIP/TWIP Steel Containing Manganese of 18. 8%, Journal of Iron and Steel Research, International, 18 (2011) 36-40.

DOI: 10.1016/s1006-706x(11)60008-3

Google Scholar

[8] W. Chen, Q. Sun, L. Xiao, J. Sun, Deformation-induced microstructure refinement in primary alpha phase-containing Ti-10V-2Fe-3Al alloy, Mater. Sci. Eng. A, 527 (2010) 7225-7234.

DOI: 10.1016/j.msea.2010.07.054

Google Scholar

[9] A. Bhattacharjee, S. Bhargava, V.K. Varma, S.V. Kamat, A.K. Gogia, Effect of beta grain size on stress induced martensitic transformation in beta solution treated Ti-10V-2Fe-3Al alloy, Scripta Mater., 53 (2005) 195-200.

DOI: 10.1016/j.scriptamat.2005.03.039

Google Scholar

[10] I.C. Dragomir, T. Ungar, Contrast factors of dislocations in the hexagonal crystal system, Journal of Applied Crystallography, 35 (2002) 556-564.

DOI: 10.1107/s0021889802009536

Google Scholar

[11] M. Jackson, N.G. Jones, D. Dye, R.J. Dashwood, Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al, Mater. Sci. Eng. A, 501 (2009) 248-254.

DOI: 10.1016/j.msea.2008.09.071

Google Scholar

[12] J.H. Kim, S.L. Semiatin, C.S. Lee, Constitutive analysis of the high-temperature deformation mechanisms of Ti-6Al-4V and Ti-6. 85Al-1. 6V alloys, Materials Science and Engineering A, 394 (2005) 366-375.

DOI: 10.1016/j.msea.2004.11.061

Google Scholar

[13] Y. Su, N. He, L. Li, X.L. Li, An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V, Wear, 261 (2006) 760-766.

DOI: 10.1016/j.wear.2006.01.013

Google Scholar

[14] B. Wang, Z. Liu, Y. Gao, S. Zhang, X. Wang, Microstructural evolution during aging of Ti-10V-2Fe-3Al titanium alloy, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 14 (2007) 335-340.

DOI: 10.1016/s1005-8850(07)60066-8

Google Scholar

[15] W.D. Zeng, Y.G. Zhou, Effect of beta flecks on mechanical properties of Ti-10V-2Fe-3Al alloy, Mater. Sci. Eng. A, 260 (1999) 203-211.

DOI: 10.1016/s0921-5093(98)00954-x

Google Scholar

[16] T.W. Duerig, J. Alberecht, D. Richter, P. Fischer, Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al, Acta Metall, 30 (1982) 2161-2172.

DOI: 10.1016/0001-6160(82)90137-7

Google Scholar

[17] N.P. Gurao, R. Kapoor, S. Suwas, Deformation behaviour of commercially pure titanium at extreme strain rates, Acta Mater., 59 3431-3446.

DOI: 10.1016/j.actamat.2011.02.018

Google Scholar

[18] Y. Liu, H. Yang, The concern of elasticity in stress-induced martensitic transformation in NiTi, Mater. Sci. Eng. A, 260 (1999) 240-245.

DOI: 10.1016/s0921-5093(98)00959-9

Google Scholar