Effect of Solution Treatment on Corrosion Resistance of the Biodegradable NZ20K Alloy

Article Preview

Abstract:

In order to study the effect of solution temperature on corrosion resistance of Mg alloy for biomedical applications, microstructure and corrosion behavior of Mg-2.25Nd-0.11Zn-0.43Zr (NZ20K) alloy solution treated at different temperatures were investigated by using a scanning electron microscope (SEM) equipped with an electron dispersive spectroscope (EDS), electrochemical and mass loss tests. The results show that the grains grow and precipitations decreases with increasing the solution temperature. The corrosion rate decreases firstly and then increases with increasing solution temperature, and the best corrosion resistance of the NZ20K alloy is obtained at the temperature of 540 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-202

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Chen, J.W. Dai, X.B. Zhang, Improvement of corrosion resistance of magnesium alloys for biomedical applications, Corros. Rev. 3-4 (2015) 101-117.

Google Scholar

[2] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R. 77 (2014) 1-34.

Google Scholar

[3] S. Virtanen, Mater. Sci. Eng. B. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility, 176 (2011) 1600-1608.

DOI: 10.1016/j.mseb.2011.05.028

Google Scholar

[4] G. Manivasagam, S. Suwas, Biodegradable Mg and Mg based alloys for biomedical implants, Mater. Sci. Technol. 30 (2014) 515-520.

DOI: 10.1179/1743284713y.0000000500

Google Scholar

[5] F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomater. 6 (2010) 1680-1692.

Google Scholar

[6] N. Li, Y.F. Zheng, Novel magnesium alloys developed for biomedical applications: A review, J. Mater. Sci. Technol. 29 (2013) 489-502.

Google Scholar

[7] S.F. Fischerauer, T. Kraus, X. Wu, S. Tangl, E. Sorantin, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, A.M. Weinberg, In vivo degradation performance of micro-arc-oxidized magnesium implants: A micro-CT study in rats, Acta Biomater. 9 (2013).

DOI: 10.1016/j.actbio.2012.09.017

Google Scholar

[8] C.J. Liu, Y.C. Zhao, Y.S. Chen, P. Liu, K.Y. Cai, Surface modification of magnesium alloy via cathodic plasma electrolysis and its influence on corrosion resistance and cytocompatibility, Mater. Lett. 132 (2014)15-18.

DOI: 10.1016/j.matlet.2014.06.019

Google Scholar

[9] M.I. Jamesh, G.S. Wu, Y. Zhao, D.R. Mckenzie, M.M.M. Bilek, P.K. Chu, Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids, Corros. Sci. 82 (2014)7-26.

DOI: 10.1016/j.corsci.2013.11.044

Google Scholar

[10] A. Alabbasi, M.B. Kannan, C. Blawert, Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants, Mater. Lett. 124 (2014)188-191.

DOI: 10.1016/j.matlet.2014.03.094

Google Scholar

[11] A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater. 17 (2015) 400-453.

DOI: 10.1002/adem.201400434

Google Scholar

[12] X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, Q. Wang, Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application, Corros. Sci. 88 (2014) 1-5.

DOI: 10.1016/j.corsci.2014.07.004

Google Scholar

[13] O. Hakimi, E. Aghion, J. Goldman, Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes, Mater. Sci. Eng. C. 51(2015) 226-232.

DOI: 10.1016/j.msec.2015.03.001

Google Scholar

[14] X.B. Zhang, Y. Zhang, K. Chen, Z.X. Ba, Z.Z. Wang, Q. Wang, Microstructure, mechanical and corrosion properties of a Mg-Nd-Zn-Sr-Zr alloys as biodegradable material, Mater. Sci. Technol. 31 (2015) 866-873.

DOI: 10.1179/1743284714y.0000000661

Google Scholar

[15] X.B. Zhang, Q. Wang, F.B. Chen, Y.J. Wu, Z.Z. Wang, Q. Wang, Relation between LPSO structure and biocorrosion behavior of biodegradable GZ51K alloy, Mater. Lett. 138 (2015) 212-215.

DOI: 10.1016/j.matlet.2014.09.133

Google Scholar

[16] X.B. Zhang, W. Sun, Y.J. Xue, Z.Z. Wang, Q. Wang, Effect of Gd/Nd ratio on mechanical and biocorrosion properties of as-extruded Mg-Nd-Gd-Sr-Zn-Zr alloys, Mater. Res. Innov. 19 (2015) 236-239.

DOI: 10.1179/1432891715z.0000000001552

Google Scholar

[17] X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Xue, Q. Wang, Microstructure and biocorrosion behaviors of solution treated and as-extruded Mg-2. 2Nd-xSr-0. 3Zr alloys, Trans. Nonferrous Met. Soc. China, 24 (2014) 3797-3803.

DOI: 10.1016/s1003-6326(14)63535-4

Google Scholar

[18] G.L. Song, A. Atrens, M. Durgusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci. 41 (1999) 249-273.

DOI: 10.1016/s0010-938x(98)00121-8

Google Scholar

[19] K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals , Scripta. Mater. 63 (2010) 1201-1204.

DOI: 10.1016/j.scriptamat.2010.08.035

Google Scholar

[20] J.S. Liao, M. Hotta, S. Motoda, T. Shinohara, Atmospheric corrosion of two field-exposed AZ31B magnesium alloys with different grain size, Corros. Sci. 71 (2013) 53-61.

DOI: 10.1016/j.corsci.2013.02.003

Google Scholar

[21] G. Ben-Hamu, D. Eliezer, K.S. Shin, S. Cohen, The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys, J. Alloys Comp. 432 (2007) 269-276.

DOI: 10.1016/j.jallcom.2006.05.075

Google Scholar

[22] N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater. 8 (2012) 925-936.

DOI: 10.1016/j.actbio.2011.11.014

Google Scholar

[23] X.B. Zhang, G.Y. Yuan, Z.Z. Wang, Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy, Mater. Sci. Technol. 29 (2013) 111-116.

DOI: 10.1179/1743284712y.0000000107

Google Scholar