[1]
K. Chen, J.W. Dai, X.B. Zhang, Improvement of corrosion resistance of magnesium alloys for biomedical applications, Corros. Rev. 3-4 (2015) 101-117.
Google Scholar
[2]
Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R. 77 (2014) 1-34.
Google Scholar
[3]
S. Virtanen, Mater. Sci. Eng. B. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility, 176 (2011) 1600-1608.
DOI: 10.1016/j.mseb.2011.05.028
Google Scholar
[4]
G. Manivasagam, S. Suwas, Biodegradable Mg and Mg based alloys for biomedical implants, Mater. Sci. Technol. 30 (2014) 515-520.
DOI: 10.1179/1743284713y.0000000500
Google Scholar
[5]
F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomater. 6 (2010) 1680-1692.
Google Scholar
[6]
N. Li, Y.F. Zheng, Novel magnesium alloys developed for biomedical applications: A review, J. Mater. Sci. Technol. 29 (2013) 489-502.
Google Scholar
[7]
S.F. Fischerauer, T. Kraus, X. Wu, S. Tangl, E. Sorantin, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, A.M. Weinberg, In vivo degradation performance of micro-arc-oxidized magnesium implants: A micro-CT study in rats, Acta Biomater. 9 (2013).
DOI: 10.1016/j.actbio.2012.09.017
Google Scholar
[8]
C.J. Liu, Y.C. Zhao, Y.S. Chen, P. Liu, K.Y. Cai, Surface modification of magnesium alloy via cathodic plasma electrolysis and its influence on corrosion resistance and cytocompatibility, Mater. Lett. 132 (2014)15-18.
DOI: 10.1016/j.matlet.2014.06.019
Google Scholar
[9]
M.I. Jamesh, G.S. Wu, Y. Zhao, D.R. Mckenzie, M.M.M. Bilek, P.K. Chu, Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids, Corros. Sci. 82 (2014)7-26.
DOI: 10.1016/j.corsci.2013.11.044
Google Scholar
[10]
A. Alabbasi, M.B. Kannan, C. Blawert, Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants, Mater. Lett. 124 (2014)188-191.
DOI: 10.1016/j.matlet.2014.03.094
Google Scholar
[11]
A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater. 17 (2015) 400-453.
DOI: 10.1002/adem.201400434
Google Scholar
[12]
X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, Q. Wang, Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application, Corros. Sci. 88 (2014) 1-5.
DOI: 10.1016/j.corsci.2014.07.004
Google Scholar
[13]
O. Hakimi, E. Aghion, J. Goldman, Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes, Mater. Sci. Eng. C. 51(2015) 226-232.
DOI: 10.1016/j.msec.2015.03.001
Google Scholar
[14]
X.B. Zhang, Y. Zhang, K. Chen, Z.X. Ba, Z.Z. Wang, Q. Wang, Microstructure, mechanical and corrosion properties of a Mg-Nd-Zn-Sr-Zr alloys as biodegradable material, Mater. Sci. Technol. 31 (2015) 866-873.
DOI: 10.1179/1743284714y.0000000661
Google Scholar
[15]
X.B. Zhang, Q. Wang, F.B. Chen, Y.J. Wu, Z.Z. Wang, Q. Wang, Relation between LPSO structure and biocorrosion behavior of biodegradable GZ51K alloy, Mater. Lett. 138 (2015) 212-215.
DOI: 10.1016/j.matlet.2014.09.133
Google Scholar
[16]
X.B. Zhang, W. Sun, Y.J. Xue, Z.Z. Wang, Q. Wang, Effect of Gd/Nd ratio on mechanical and biocorrosion properties of as-extruded Mg-Nd-Gd-Sr-Zn-Zr alloys, Mater. Res. Innov. 19 (2015) 236-239.
DOI: 10.1179/1432891715z.0000000001552
Google Scholar
[17]
X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Xue, Q. Wang, Microstructure and biocorrosion behaviors of solution treated and as-extruded Mg-2. 2Nd-xSr-0. 3Zr alloys, Trans. Nonferrous Met. Soc. China, 24 (2014) 3797-3803.
DOI: 10.1016/s1003-6326(14)63535-4
Google Scholar
[18]
G.L. Song, A. Atrens, M. Durgusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci. 41 (1999) 249-273.
DOI: 10.1016/s0010-938x(98)00121-8
Google Scholar
[19]
K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals , Scripta. Mater. 63 (2010) 1201-1204.
DOI: 10.1016/j.scriptamat.2010.08.035
Google Scholar
[20]
J.S. Liao, M. Hotta, S. Motoda, T. Shinohara, Atmospheric corrosion of two field-exposed AZ31B magnesium alloys with different grain size, Corros. Sci. 71 (2013) 53-61.
DOI: 10.1016/j.corsci.2013.02.003
Google Scholar
[21]
G. Ben-Hamu, D. Eliezer, K.S. Shin, S. Cohen, The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys, J. Alloys Comp. 432 (2007) 269-276.
DOI: 10.1016/j.jallcom.2006.05.075
Google Scholar
[22]
N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater. 8 (2012) 925-936.
DOI: 10.1016/j.actbio.2011.11.014
Google Scholar
[23]
X.B. Zhang, G.Y. Yuan, Z.Z. Wang, Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy, Mater. Sci. Technol. 29 (2013) 111-116.
DOI: 10.1179/1743284712y.0000000107
Google Scholar