[1]
B.L. Mordike, T. Ebert, Magnesium: Properties-applications-potential. Materials Science and Engineering: A. 302(2001) 37-45.
Google Scholar
[2]
R. Alderliesten, C. RANS, R. Benedictus, The applicability of magnesium based Fibre Metal Laminates in aerospace structures. Composites Science and Technology. 68(2008) 2983-2993.
DOI: 10.1016/j.compscitech.2008.06.017
Google Scholar
[3]
E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, Journal of Materials Processing Tech. 117(2001) 381-385.
DOI: 10.1016/s0924-0136(01)00779-8
Google Scholar
[4]
Z. Peng, H. Geng, Q. Wang, Effect of melting technique on the microstructure and mechanical properties of AZ91 commercial magnesium alloys. Materials Science and Engineering A. 429(2006) 320-323.
DOI: 10.1016/j.msea.2006.05.066
Google Scholar
[5]
M. Shanthi, C.Y.H. Lim, L. Lu, Effects of grain size on the wear of recycled AZ91 Mg, Tribology international. 40(2007) 335-338.
DOI: 10.1016/j.triboint.2005.11.025
Google Scholar
[6]
K. Suresh, K.P. Rao, Y.V.R.K. Prasad, N. Hort, K.U. Kainer, Study of hot forging behavior of as-cast Mg–3Al–1Zn–2Ca alloy towards optimization of its hot workability, Materials and Design. 57(2014) 697–704.
DOI: 10.1016/j.matdes.2014.01.032
Google Scholar
[7]
J.P. Young, G. Ayoub, B. Mansoor, D.P. Field, The effect of hot rolling on the microstructure, texture andmechanical properties of twin roll cast AZ31Mg, Journal of Materials Processing Technology. 216(2015) 315-327.
DOI: 10.1016/j.jmatprotec.2014.09.023
Google Scholar
[8]
J. Peng, T. Jianquan, T. Xiaoshan, Inhomogeneity of microstructure and mechanical properties of a 500 mm diameter heavy section semi-continuous cast AZ61 magnesium alloy ingot. Research & Development, 11(2004) 213-221.
Google Scholar
[9]
A. Maltais, D. Dubé, M. Fiset, Improvements in the metallography of as-cast AZ91 alloy. Materials Characterization. 52(2004) 103-119.
DOI: 10.1016/j.matchar.2004.04.002
Google Scholar
[10]
Y. Wang, G. Liu, Z. Fan, A new heat treatment procedure for rheo-diecast AZ91D magnesium alloy. Scripta Mater. 54(2006) 903-908.
DOI: 10.1016/j.scriptamat.2005.10.073
Google Scholar
[11]
I.A. Yakubtsov, B.J. Diak, C.A. Sager, Effects of heat treatment on microstructure and tensile deformation of Mg AZ80 alloy at room temperature. Materials Science and Engineering: A. 496(2008) 247-255.
DOI: 10.1016/j.msea.2008.05.019
Google Scholar
[12]
S. Spigarelli, M.E. Mehtedi, M. Cabibbo, Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy. Materials Science and Engineering: A, 462(2007) 197-201.
DOI: 10.1016/j.msea.2006.03.155
Google Scholar
[13]
C. Peng, D.H. StJohn, M. Qian, The Effect of Manganese on the Grain Size of Commercial AZ31 Alloy. Materials Science Forum, 488 (2005) 139-142.
DOI: 10.4028/www.scientific.net/msf.488-489.139
Google Scholar
[14]
B. Böttger, J. Eiken, M. Ohno, Controlling Microstructure in Magnesium Alloys: A Combined Thermodynamic, Experimental and Simulation Approach. Advanced Engineering Materials. 8(2006) 241-247.
DOI: 10.1002/adem.200500241
Google Scholar
[15]
H.Z. Ye, X.Y. Liu, In situ formation behaviors of Al8Mn5 particles in Mg-Al alloys. Journal of Alloys and Compounds. 419(2006) 54-60.
DOI: 10.1016/j.jallcom.2005.08.111
Google Scholar
[16]
M. Piché, A.D. Pelton, C. Brochu, Magnesium Technology From Magnesium Technology 2003. Essential Readings in Magnesium Technology. 2003, pp, 411.
DOI: 10.1002/9781118859803.ch65
Google Scholar
[17]
E. F. Emely, Principles of Magnesium technology, first ed., Oxford, Pergamon Press, (1966).
Google Scholar