[1]
Z. Yang, J. Li, J. Zhang, G. Lorimer, J. Robson, Review on Research and Development of Magnesium Alloys, Acta Metallurgica Sinica (English Letters), 21 (2008) 313-328.
DOI: 10.1016/s1006-7191(08)60054-x
Google Scholar
[2]
B. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering: A, 324 (2002) 103-112.
DOI: 10.1016/s0921-5093(01)01290-4
Google Scholar
[3]
K. Hono, C. Mendis, T. Sasaki, K. Oh-Ishi, Towards the development of heat-treatable high-strength wrought Mg alloys, Scripta Materialia, 63 (2010) 710-715.
DOI: 10.1016/j.scriptamat.2010.01.038
Google Scholar
[4]
S. Agnew, J. Nie, Preface to the viewpoint set on: The current state of magnesium alloy science and technology, Scripta Materialia, 63 (2010) 671-673.
DOI: 10.1016/j.scriptamat.2010.06.029
Google Scholar
[5]
X. Wu, X. Yang, J. Ma, Q. Huo, J. Wang, H. Sun, Enhanced stretch formability and mechanical properties of a magnesium alloy processed by cold forging and subsequent annealing, Materials & Design, 43 (2013) 206-212.
DOI: 10.1016/j.matdes.2012.06.065
Google Scholar
[6]
Q. Huo, X. Yang, H. Sun, B. Li, J. Qin, J. Wang, J. Ma, Enhancement of tensile ductility and stretch formability of AZ31 magnesium alloy sheet processed by cross-wavy bending, Journal of Alloys and Compounds, 581 (2013) 230-235.
DOI: 10.1016/j.jallcom.2013.06.185
Google Scholar
[7]
C. Bettles, M. Gibson, Current wrought magnesium alloys: Strengths and weaknesses, JOM, 57 (2005) 46-49.
DOI: 10.1007/s11837-005-0095-0
Google Scholar
[8]
S. Kamado, Y. Kojima, Development of Magnesium Alloys with High Performance, Materials Science Forum, 546 (2007) 55-64.
DOI: 10.4028/www.scientific.net/msf.546-549.55
Google Scholar
[9]
T. Mukai, H. Watanabe, K. Higashi, Application of superplasticity in commercial magnesium alloy for fabrication of structural components, Materials Science & Technology, volume 16 (2000) 1314-1319(1316).
DOI: 10.1179/026708300101507163
Google Scholar
[10]
Humphreys F J, Hatherly M, Recrystallization and Related Annealing Phenomena, New York, (1995).
Google Scholar
[11]
T. Al-Samman, G. Gottstein, Dynamic recrystallization during high temperature deformation of magnesium, Materials Science & Engineering A, 490 (2008) 411–420.
DOI: 10.1016/j.msea.2008.02.004
Google Scholar
[12]
O. Sitdikov, R. Kaibyshev, Dynamic Recrystallization in Pure Magnesium, Materials Transactions, 42 (2001) 1928-(1937).
DOI: 10.2320/matertrans.42.1928
Google Scholar
[13]
É. Martin, J.J. Jonas, Evolution of microstructure and microtexture during the hot deformation of Mg–3% Al, Acta Materialia, 58 (2010) 4253–4266.
DOI: 10.1016/j.actamat.2010.04.017
Google Scholar
[14]
A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Materialia, 49 (2001) 1199–1207.
DOI: 10.1016/s1359-6454(01)00020-9
Google Scholar
[15]
H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Gao, Z.Y. Chen, C.M. Liu, Hot deformation and dynamic recrystallization behaviors of Mg–Gd–Y–Zr alloy, Materials Science and Engineering: A, 628 (2015) 311-318.
DOI: 10.1016/j.msea.2015.01.041
Google Scholar
[16]
E.I. Poliak, J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, Isij International, 43 (2003) 684-691.
DOI: 10.2355/isijinternational.43.684
Google Scholar
[17]
E.I. Poliak, J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Materialia, 44 (1996) 127–136.
DOI: 10.1016/1359-6454(95)00146-7
Google Scholar