[1]
Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review, Int Mater Rev. 53 (2008) 57-90.
DOI: 10.1179/174328008x277524
Google Scholar
[2]
Yu, S., B. Tang, S. Zhang, et al., The effect of Mn addition on phase development, microstructure and microwave dielectric properties of ZrTi2O6–ZnNb2O6 ceramics, Mater Lett. 80 (2012) 124-126.
DOI: 10.1016/j.matlet.2012.04.093
Google Scholar
[3]
Zhang, J., Z. Yue, X. Zhang, et al., Low-temperature sintering and microwave dielectric properties of CaF2-doped MgTiO3 ceramics, Ceram Int. 41 (2015) S515-S519.
DOI: 10.1016/j.ceramint.2015.03.299
Google Scholar
[4]
Pullar, R.C., The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): a critical review, J Am Ceram Soc. 92 (2009) 563-577.
Google Scholar
[5]
Li, E., P. Zhang, Y. Mi, et al., Low-Temperature Sintering Behavior and Dielectric Properties of Li2O-Nb2O5-TiO2 Ceramics with Li-B-Si-O Glass, J Electron Mater. 44 (2015) 4316-4321.
DOI: 10.1007/s11664-015-3927-x
Google Scholar
[6]
Pullar, R.C., J.D. Breeze, and N.M. Alford, Microwave dielectric properties of columbite structures niobate ceramics M2+Nb2O6, Key Eng. Mater. (2002) 224-226.
DOI: 10.4028/www.scientific.net/kem.224-226.1
Google Scholar
[7]
Pullar, R.C., K. Okeneme, and N. McN. Alford, Temperture compensated niobate microwave ceramic with the columbite structure M2+Nb2O6, J Euro Ceram Soc. 23 (2003) 2479-2483.
DOI: 10.1016/s0955-2219(03)00133-x
Google Scholar
[8]
Dai, J., C. Zhang, L. Shi, et al., Low-temperature synthesis of ZnNb2O6 powders via hydrothermal method, Ceram Int. 38 (2012) 1211-1214.
DOI: 10.1016/j.ceramint.2011.08.050
Google Scholar
[9]
Quercioli, R., J. Bernard, J. -M. Haussonne, et al., Low sintering temperature of ZnNb2O6 for silver co-sintering, Ceram Int. 40 (2014) 1771-1779.
DOI: 10.1016/j.ceramint.2013.07.077
Google Scholar
[10]
Ruyu, W., H. Jinliang, Z. Huanfu, et al., Effect of CuO and V2O5 Doping on Dielectric Properties of ZnNb2O6 Ceramics, Journal of the Chinese Ceramic Society. 4 (2006) 442-445.
Google Scholar
[11]
Kim, D. -W., K.H. Ko, and K.S. Hong, Influence of Copper(II) Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties, J Am Ceram Soc. 84 (2001) 1286-1290.
DOI: 10.1111/j.1151-2916.2001.tb00830.x
Google Scholar
[12]
Bafrooei, H.B., E.T. Nassaj, C.F. Hu, et al., Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties, Physica B. 454 (2014) 35-41.
DOI: 10.1016/j.physb.2014.07.024
Google Scholar
[13]
Gao, F., J. Liu, R. Hong, et al., Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics, Ceram Int. 35 (2009) 2687-2692.
DOI: 10.1016/j.ceramint.2009.03.012
Google Scholar
[14]
Shahgholi, N., K. Asadian, and T. Ebadzadeh, Microstructural and microwave dielectric properties of ZnNb2O6 ceramics prepared through microwave sintering, Ceram Int. 40 (2014) 14335-14339.
DOI: 10.1016/j.ceramint.2014.06.024
Google Scholar
[15]
R, V.M., R.C. P, and L.P. N, Sinterability and Dielectric Properties of ZnNb2O6-Glass Ceramic Composites. INTECH Open Access Publisher, India, 2011, pp.277-290.
Google Scholar
[16]
Zhang, Y.C., Z.X. Yue, Z.L. Gui, et al., Microwave dielectric properties of (Zn1−xMgx)Nb2O6 ceramics, Mater Lett. 57 (2003) 4531-4534.
DOI: 10.1016/s0167-577x(03)00357-4
Google Scholar
[17]
S, F.M., L.X. Q, and C.X. M, Structure and micriowave dielectric characteristics of Ca1-xNd2x/3TiO3 ceramics, J Euro Ceram Soc. 28 (2008) 585-590.
DOI: 10.1016/j.jeurceramsoc.2007.06.015
Google Scholar