Microstructural Evolution of a Fine-Grained Mg-Y-Nd Alloy during Superplastic Deformation

Article Preview

Abstract:

Cast Mg-4.27Y-2.94Nd-0.51Zr (wt.%) alloy was subjected to submerged friction stir processing (SFSP) with at a rotation rate of 600 rpm and a traveling speed of 60 mm min-1. Superplastic behavior of specimens with an average grain size of ~1.3 μm were investigated in the temperature ranges of 683-758 K and the strain rate ranges from 1×10-1 to 4×10-4 s-1. Microstructure characteristics were investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. The results show that the maximum elongation of 967% was obtained at 733 K and 3×10-3 s-1, the optimal HSRS of 900% achieved at 758 K and 2×10-2 s-1. Grains and second phase particles grew coarser with the increasing temperature or decreasing strain rate. Remarkable grain growth is the main reason that elongations are all significantly decreased when the strain rate decrease from 3×10-3 s-1 to 4×10-4 s-1. Grain boundary sliding is the main mechanism during superplastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-167

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy, Acta. Mater. 47 (1999) 3753-3758.

DOI: 10.1016/s1359-6454(99)00253-0

Google Scholar

[2] T.A. Freeney, R.S. Mishra, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of a Cast-Magnesium-Rare Earth Alloy, Metal. Mater. Trans. A 41(2010) 73-84.

DOI: 10.1007/s11661-009-0080-2

Google Scholar

[3] X.B. Liu, R.S. Chen, E.H. Han, High temperature deformations of Mg-Y-Nd alloys fabricated by different routes, Mater. Sci. Eng. A 497 (2008) 326-332.

DOI: 10.1016/j.msea.2008.07.024

Google Scholar

[4] M.T. Pérez-Prado, J.A. del Valle, O.A. Ruano, Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding, Scr. Mater. 51 (2004) 1093-1097.

DOI: 10.1016/j.scriptamat.2004.07.028

Google Scholar

[5] R. Lapovok, X. Gao, J.F. Nie, Y. Estrin, S.N. Mathaudhu, Enhancement of properties in cast Mg-Y-Zn rod processed by severe plastic deformation, Mater. Sci. Eng. A 615 (2014) 198-207.

DOI: 10.1016/j.msea.2014.07.068

Google Scholar

[6] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.

Google Scholar

[7] Z.Y. MA, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A 39 (2008) 642-658.

DOI: 10.1007/s11661-007-9459-0

Google Scholar

[8] N. Kumar, N. Dendge, R. Banerjee, R.S. Mishra, Effect of microstructure on the uniaxial tensile deformation behavior of Mg-4Y-3RE alloy, Mater. Sci. Eng. A 590 (2014) 116-131.

DOI: 10.1016/j.msea.2013.10.009

Google Scholar

[9] Q. Yang, B.L. Xiao, Q. Zhang, M.Y. Zheng, Z.Y. Ma, Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase, Scr. Mater. 69 (2013) 801-804.

DOI: 10.1016/j.scriptamat.2013.09.001

Google Scholar

[10] D.T. Zhang, S.X. Wang, C. Qiu, W. Zhang, Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing, Mater. Sci. Eng. A 556 (2012) 100-106.

DOI: 10.1016/j.msea.2012.06.063

Google Scholar

[11] W.J. Kim, I.K. Moon, S.H. Han, Ultrafine-grained Mg-Zn-Zr alloy with high strength and high-strain-rate superplasticity, Mater. Sci. Eng. A 538 (2012) 374-385.

DOI: 10.1016/j.msea.2012.01.063

Google Scholar

[12] Douglas C. Hofmann, Kenneth S. Vecchio, Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials, Mater. Sci. Eng. A 402 (2005) 234-241.

DOI: 10.1016/j.msea.2005.04.032

Google Scholar

[13] B. Darras, E. Kishta, Submerged friction stir processing of AZ31 Magnesium alloy, Mater. Des. 47 (2013) 133-137.

DOI: 10.1016/j.matdes.2012.12.026

Google Scholar

[14] F. Chai, D.T. Zhang, Y.Y. Li, W.W. Zhang, High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing, Mater. Sci. Eng. A 568 (2013) 40-48.

DOI: 10.1016/j.msea.2013.01.026

Google Scholar

[15] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta. Mater. 48 (2000) 1691-1703.

DOI: 10.1016/s1359-6454(00)00013-6

Google Scholar

[16] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Hardening precipitation in a Mg-4Y-3RE alloy, Acta. Mater. 51 (2003) 5335-5348.

DOI: 10.1016/s1359-6454(03)00391-4

Google Scholar

[17] G.H. Cao, D.T. Zhang, W. Zhang, C. Qiu, Microstructure evolution and mechanical properties of Mg-Nd-Y alloy in different friction stir processing conditions, J. Alloys Compd. 636 (2015) 12-19.

DOI: 10.1016/j.jallcom.2015.02.081

Google Scholar

[18] F. Chai, D.T. Zhang, W.W. Zhang, Y.Y. Li, Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy, Mater. Sci. Eng. A 590 (2014) 80-87.

DOI: 10.1016/j.msea.2013.10.029

Google Scholar

[19] G. Garcés, M. Maeso, P. Pérez, P. Adeva, Effect of extrusion temperature on superplasticity of PM-WE54, Mater. Sci. Eng. A 462 (2007) 127-131.

DOI: 10.1016/j.msea.2006.05.172

Google Scholar