Microstructure and Tensile Properties of Boron-Doped Beta Titanium Alloy

Article Preview

Abstract:

The microstructural evolution and the mechanical properties of Ti-2Al-9.2Mo-2Fe-0.1B alloy during solution treatment and aging have been investigated. The experimental results showed that the addition of boron resulted in the formation of TiB phase and high level of recrystallization during hot deformation. TiB phase did not moved with the grain boundary migration during solution treatment. On aging, a little of α phase nucleated from the interface of TiB and β phase. The existence of TiB phase could offer the source of cracks during tensile deformation, resulting in the ductility decline of the alloy. In addition, the alloy which aged at 550°C and 600°C for 2h could obtain a good combination of strength and ductility, with 1100~1300MPa of ultimate strength and exceeding 7% of elongation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-294

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Leyens, M. Peters, Titanium and titanium alloys, Wiley Online Library, Germany, (2003).

Google Scholar

[2] Y. Kawabe, S. Muneki, Strengthening capability of beta titanium alloys, in: Beta titanium alloys in the 1990's, (1993).

Google Scholar

[3] G. Lütjering, J.C. Williams, Titanium, Springer Berlin Heidelberg, Germany, (2007).

Google Scholar

[4] Y. Yang, Study on Microstructure Evolution and Mechanical Behavior of Ti-6Al-4V-0. 1B Alloy, in: Materials Science and Engineering, General Research Institute for Non-ferrous Metals, Beijing, China, (2012).

Google Scholar

[5] W. Zhenguo, The Microstructure and Mechanical Properties of New TiAlCrFe Low Cost Titanium Alloy, in: State Key Lab of Non-ferrous & Processing, General Research Institute for Nonferrous Metals, Beijing, China, (2013).

Google Scholar

[6] V.N. Moiseev, N.V. Sysoeva, I.G. Polyakova, Effect of additional carbon and boron alloying on the structure and mechanical properties of alloy VT22, Met. Sci. Heat Treat. , 40 (1998) 107-111.

DOI: 10.1007/bf02467469

Google Scholar

[7] T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, C.M. Ward-Close, Microstructure and tensile properties of mechanically alloyed Ti-6Al-4V with boron additions, Mater. Sci. Eng., A 282 (2000) 240-250.

DOI: 10.1016/s0921-5093(99)00699-1

Google Scholar

[8] K.S.R. Chandran, D.B. Miracle, Titanium-boron alloys and composites: Processing, properties, and applications, JOM 56 (2004) 32, 41.

DOI: 10.1007/s11837-004-0124-4

Google Scholar

[9] S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle, Grain refinement of cast titanium alloys via trace boron addition, Scr. Mater. , 53 (2005) 1421-1426.

DOI: 10.1016/j.scriptamat.2005.08.020

Google Scholar

[10] M. Bermingham, S. McDonald, M. Dargusch, D. StJohn, Microstructure of cast titanium alloys, in: Mater. Forum 2007, pp.84-89.

Google Scholar

[11] S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle, Processing, microstructure, and properties of beta titanium alloys modified with boron, J. Mater. Eng. Perform. , 14 (2005) 741-746.

DOI: 10.1361/105994905x75547

Google Scholar

[12] R. Banoth, R. Sarkar, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara Rao, Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys, Materials & Design, 67 (2015) 50-63.

DOI: 10.1016/j.matdes.2014.11.004

Google Scholar

[13] I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys—an overview, Mater. Sci. Eng., A 243 (1998) 46-65.

DOI: 10.1016/s0921-5093(97)00783-1

Google Scholar

[14] C. -L. Li, X. -J. Mi, W. -J. Ye, S. -X. Hui, Y. Yu, W. -Q. Wang, A study on the microstructures and tensile properties of new beta high strength titanium alloy, J. Alloys Compd., 550 (2013) 23-30.

DOI: 10.1016/j.jallcom.2012.09.140

Google Scholar

[15] D. -G. Lee, C. Li, Y. Lee, X. Mi, W. Ye, Effect of temperature on grain growth kinetics of high strength Ti–2Al–9. 2Mo–2Fe alloy, Thermochim. Acta 586 (2014) 66-71.

DOI: 10.1016/j.tca.2014.03.023

Google Scholar

[16] A. Rollett, F. Humphreys, G.S. Rohrer, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, (2004).

Google Scholar

[17] S. Banerjee, P. Mukhopadhyay, Phase transformations: examples from titanium and zirconium alloys, Elsevier, (2010).

Google Scholar

[18] A. Bowen, Omega phase embrittlement in aged Ti-15% Mo, Scr. Metall. , 5 (1971) 709-715.

DOI: 10.1016/0036-9748(71)90258-4

Google Scholar

[19] J.L. Murray, P.K. Liao, K.E. Spear, The B−Ti (Boron-Titanium) system, Bulletin of Alloy Phase Diagrams, 7 (1986) 550-555.

DOI: 10.1007/bf02869864

Google Scholar

[20] P. Nandwana, S. Nag, D. Hill, J. Tiley, H.L. Fraser, R. Banerjee, On the correlation between the morphology of α and its crystallographic orientation relationship with TiB and β in boron-containing Ti–5Al–5Mo–5V–3Cr–0. 5Fe alloy, Scr. Mater. , 66 (2012).

DOI: 10.1016/j.scriptamat.2012.01.011

Google Scholar

[21] H.P. Ng, E. Douguet, C.J. Bettles, B.C. Muddle, Age-hardening behaviour of two metastable beta-titanium alloys, Materials Science and Engineering: A, 527 (2010) 7017-7026.

DOI: 10.1016/j.msea.2010.07.055

Google Scholar