[1]
H. Yin, Q. P. Sun, Temperature Variation in NiTi Shape Memory Alloy during Cyclic Phase Transition, J. of Materi. Eng. and Perform, 21(12)(2012), 2505-2508.
DOI: 10.1007/s11665-012-0395-9
Google Scholar
[2]
D. Vojtěch, M. Voděrová, J. Fojt, P. Novák, T. Kubásek, Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy, Appl. Surf. Sci, 257(5)(2012), 1573-1582.
DOI: 10.1016/j.apsusc.2010.08.097
Google Scholar
[3]
X. Q. Yin, X. J. Mi, Y.F. Li, B. D. Gao, Microstructure and Properties of Deformation Processed Polycrystalline Ni47Ti44Nb9 Shape Memory Alloy, J. of Materi. Eng. and Perform, 21(12)(2012), 2684-2690.
DOI: 10.1007/s11665-012-0376-z
Google Scholar
[4]
L. Stirling, C. H. Yu, J. Miller, E. Hawkes, R. Wood, E. Goldfield, R. Nagpal, Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic, J. of Materi. Eng. and Perform, 20(4-5)(2011), 658-662.
DOI: 10.1007/s11665-011-9858-7
Google Scholar
[5]
J. V. Humbeeck, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A, 272-275(1999), 134-148.
Google Scholar
[6]
L. M. Schetky, Shape memory alloy applications in space systems, Mater. Des, 12 (1)(1991), 29-32.
Google Scholar
[7]
K. Otsuka, C. M. Wayman(Eds. ), Shape Memory Materials, Cambridge, 1998, Cambridge University Press.
Google Scholar
[8]
H. B. Xu, C. B. Jiang, S. K. Gong, G. Feng, Martensitic transformation of the Ti50Ni48Fe2 alloy deformed at different temperatures, Mater. Sci. Eng. A, 281 (1-2)(2000), 234-238.
DOI: 10.1016/s0921-5093(99)00722-4
Google Scholar
[9]
J. Frenzel, J. Pfetzing K, K. Neuking, G. Eggeler, On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni-Ti-Fe shape memory alloys, Mater. Sci. Eng. A, 481-482(2008), 635-638.
DOI: 10.1016/j.msea.2007.03.115
Google Scholar
[10]
S. Xue, W. Wang, D. Wu, Q. Zhai, H. Zheng, On the explanation for the time-dependence of B2 to R martensitic transformation in Ti50Ni47Fe3 shape memory alloy, Mater. Lett, 72(2012), 119-121.
DOI: 10.1016/j.matlet.2011.12.095
Google Scholar
[11]
J. G. Wang, F. S. Liu, J. M. Cao, The microstructure and thermomechanical behavior of Ti50Ni47Fe2. 5Nd0. 5 shape memory alloys, Mater. Sci. Eng. A, 527(2010), 6200-6204.
DOI: 10.1016/j.msea.2010.06.004
Google Scholar
[12]
Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal structure of the martensite in Ti-49. 2 at. %Ni alloy analyzed by the single crystal X-ray diffraction method, Acta. Metall, 33(1985), 2049-(2056).
DOI: 10.1016/0001-6160(85)90128-2
Google Scholar
[13]
K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci, 50(2005), 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[14]
S. D. Prokoshkin, M. N. Belousov, V. Ya. Abramov, A. V. Korotitskii, S. Yu. Makushev, I. Yu. Khmelevskaya, S. V. Dobatkin, V. V. Stolyarov, E. A. Prokofev, A. I. Zharikov, R. Z. Valiev, Creation of sub-microcrystalline structure and improvement of functional properties of shape memory alloys of the Ti-Ni-Fe system with the help of ECAP, Met. Sci. Heat. Treat, 49 (1-2)(2007).
DOI: 10.1007/s11041-007-0009-6
Google Scholar