Microstructure and Mechanical Properties of TiNiFe Shape Memory Alloys with Different Compositions

Article Preview

Abstract:

The microstructure and mechanical properties of TiNiFe alloys with different compositions was investigated by tensile test, X-ray diffraction, EBSD, SEM, and TEM. The results indicated that tensile strength rapidly increased with increasing Ni content. In addition, Ti2(Ni,Fe) particles were observed in the TiNiFe alloys, which affected the mechanical properties. Increasing the content of Ni had little influence on the grain size of TiNiFe alloys. With the replacement of Ni by Fe, the lattice constant of TiNiFe alloys decreased as the Ni content increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-301

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yin, Q. P. Sun, Temperature Variation in NiTi Shape Memory Alloy during Cyclic Phase Transition, J. of Materi. Eng. and Perform, 21(12)(2012), 2505-2508.

DOI: 10.1007/s11665-012-0395-9

Google Scholar

[2] D. Vojtěch, M. Voděrová, J. Fojt, P. Novák, T. Kubásek, Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy, Appl. Surf. Sci, 257(5)(2012), 1573-1582.

DOI: 10.1016/j.apsusc.2010.08.097

Google Scholar

[3] X. Q. Yin, X. J. Mi, Y.F. Li, B. D. Gao, Microstructure and Properties of Deformation Processed Polycrystalline Ni47Ti44Nb9 Shape Memory Alloy, J. of Materi. Eng. and Perform, 21(12)(2012), 2684-2690.

DOI: 10.1007/s11665-012-0376-z

Google Scholar

[4] L. Stirling, C. H. Yu, J. Miller, E. Hawkes, R. Wood, E. Goldfield, R. Nagpal, Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic, J. of Materi. Eng. and Perform, 20(4-5)(2011), 658-662.

DOI: 10.1007/s11665-011-9858-7

Google Scholar

[5] J. V. Humbeeck, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A, 272-275(1999), 134-148.

Google Scholar

[6] L. M. Schetky, Shape memory alloy applications in space systems, Mater. Des, 12 (1)(1991), 29-32.

Google Scholar

[7] K. Otsuka, C. M. Wayman(Eds. ), Shape Memory Materials, Cambridge, 1998, Cambridge University Press.

Google Scholar

[8] H. B. Xu, C. B. Jiang, S. K. Gong, G. Feng, Martensitic transformation of the Ti50Ni48Fe2 alloy deformed at different temperatures, Mater. Sci. Eng. A, 281 (1-2)(2000), 234-238.

DOI: 10.1016/s0921-5093(99)00722-4

Google Scholar

[9] J. Frenzel, J. Pfetzing K, K. Neuking, G. Eggeler, On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni-Ti-Fe shape memory alloys, Mater. Sci. Eng. A, 481-482(2008), 635-638.

DOI: 10.1016/j.msea.2007.03.115

Google Scholar

[10] S. Xue, W. Wang, D. Wu, Q. Zhai, H. Zheng, On the explanation for the time-dependence of B2 to R martensitic transformation in Ti50Ni47Fe3 shape memory alloy, Mater. Lett, 72(2012), 119-121.

DOI: 10.1016/j.matlet.2011.12.095

Google Scholar

[11] J. G. Wang, F. S. Liu, J. M. Cao, The microstructure and thermomechanical behavior of Ti50Ni47Fe2. 5Nd0. 5 shape memory alloys, Mater. Sci. Eng. A, 527(2010), 6200-6204.

DOI: 10.1016/j.msea.2010.06.004

Google Scholar

[12] Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal structure of the martensite in Ti-49. 2 at. %Ni alloy analyzed by the single crystal X-ray diffraction method, Acta. Metall, 33(1985), 2049-(2056).

DOI: 10.1016/0001-6160(85)90128-2

Google Scholar

[13] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci, 50(2005), 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[14] S. D. Prokoshkin, M. N. Belousov, V. Ya. Abramov, A. V. Korotitskii, S. Yu. Makushev, I. Yu. Khmelevskaya, S. V. Dobatkin, V. V. Stolyarov, E. A. Prokofev, A. I. Zharikov, R. Z. Valiev, Creation of sub-microcrystalline structure and improvement of functional properties of shape memory alloys of the Ti-Ni-Fe system with the help of ECAP, Met. Sci. Heat. Treat, 49 (1-2)(2007).

DOI: 10.1007/s11041-007-0009-6

Google Scholar