[1]
D. W.D. Brewer, R.K. Bird, T.A. Wallace. Titanium alloys and processing for high speed aircraft. Mater. Sci. Eng. A 243 (1998) 299-304.
DOI: 10.1016/s0921-5093(97)00818-6
Google Scholar
[2]
C. Leyens, M. Peters. Titanium and titanium alloys fundamental and applications. Wiley-VCH Gmbh & Co., 2003, p.5–10.
Google Scholar
[3]
C. Ouchi. Development and application of new titanium alloy SP-700. In: S. Fujishiro, D. Eylon, T. Kishi, et al. Metallurgy and Technology of Practical Titanium Alloys. The Minerals, Metals & Materials Soceity. 1994, pp.37-44.
Google Scholar
[4]
C. Ouchi, H. Fukai, K. Hasegawa. Microstructural characteristics and unique properties obtained by solution treatment or aging in titanium alloy. Mater Sci Eng. A263 (1999) 132-136.
DOI: 10.1016/s0921-5093(98)01171-x
Google Scholar
[5]
R. Boyer, G. Welsch, E.W. Collings. Materials properties handbook: titanium alloys. Materials Park, OH, USA: ASM international; (1994).
Google Scholar
[6]
A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa, M. Yamada. Development and applications of titanium alloy SP-700 with high formability. J Test Eval. 24 (1996) 100–9.
Google Scholar
[7]
C. Ouchi, K. Minikawa, K. Takahashi, A. Ogawa. M. Ishikawa. Microstructure and mechanical properties relationship of β-rich titanium alloy. NKK Tech Rev. 65 (1992) 61–70.
Google Scholar
[8]
W.D. Brewer, R.K. Bird, T.A. Wallace. Titanium alloys and processing for high speed aircraft. Mater Sci Eng. A243 (1998) 299–304.
Google Scholar
[9]
T. Fujita, A. Ogawa, C. Ouchi, et al. Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process. Mater. Sci. Eng. A 213 (1996) 148-153.
DOI: 10.1016/0921-5093(96)10232-x
Google Scholar
[10]
S.L. Semiatin, V. Seetharaman, and I. weiss. Flow stress and globularization kinetics during hot work of Ti-6Al-4V with a colony alpha microstructure. Mater. Sci. Eng. A 263 (1999) 257-259.
DOI: 10.1016/s0921-5093(98)01156-3
Google Scholar
[11]
N.S. Reddy, Y.H. Lee, C.H. Park, and C.S. Lee. Predication of flow stress in Ti-6Al-4V alloy with an equiaxed α+β microstructure by artificial neural network. Mater. Sci. Eng. A 492 (2008) 275-278.
DOI: 10.1016/j.msea.2008.03.030
Google Scholar
[12]
G.F. Zhang, S.Z. Chen. Hot deformation behavior of Ti-6. 5Al-3. 5Mo-1. 5Zr-0. 3Si alloy with acicular microstructure. J Cent South Univ Technol. 18 (2011) 296-302.
DOI: 10.1007/s11771-011-0694-6
Google Scholar
[13]
SVS. NarayanaMurty, R.B. Nageswara. Instability criteria for hot deformation of materials. J Mater Process Technol. 104 (2000) 103–109.
Google Scholar
[14]
S. Guo S, D. Li, et al. Characterization of hot deformation behavior of a Zn–10. 2Al–2. 1Cu alloy using processing maps. Mater Des 2012, 41, p.158–66.
Google Scholar
[15]
V.V. Balasubrahmanyam, YVRK. Prasad. Deformation behavior of beta titanium alloy Ti-10V-4. 5Fe-1. 5Al in hot upset forging. Mater. Sci. Eng. A 336 (2002) 150-158.
DOI: 10.1016/s0921-5093(01)01982-7
Google Scholar
[16]
YVRK. Prasad, H.L. Gegel, S.M. Doraivelu, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall Mater Trans. 15A (1984) 1883–92.
DOI: 10.1007/bf02664902
Google Scholar