[1]
A. G. Evans, D. R. Mumm, J. W. Hutchinson, Mechanisms controlling the durability of thermal barrier coatings, Prog. Mater. Sci. 46(2001)505-553.
DOI: 10.1016/s0079-6425(00)00020-7
Google Scholar
[2]
N. Patdture, M. Gell, E. Jordan, Thermal barrier coatings for gas turbine engine applications, Sci. 296(2002)280-284.
DOI: 10.1126/science.1068609
Google Scholar
[3]
A.G. Evans, D. R. Clarke, C. G. Levi, The influence of oxides on the performance of advanced gas turbines, J European Ceramic Soc. 28(2008)1405-1419.
DOI: 10.1016/j.jeurceramsoc.2007.12.023
Google Scholar
[4]
C. Pertorak, J. IlavNsky, H. Wang, Microstructural evolution of 7 wt. % Y2O3-ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity, Surf. Coat. Technol. 205(2010)57-65.
DOI: 10.1016/j.surfcoat.2010.06.007
Google Scholar
[5]
M. Gell, J. Eric, V. Krishnakumar, K. McCarron, Bond strength, bond stress and spallation mechanisms of thermal barrier coatings, Surf. Coat. Technol. 120(1999), 53-60.
DOI: 10.1016/s0257-8972(99)00338-2
Google Scholar
[6]
X. Wang, R. Wu, A. Atkinson, Characterization of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy, Surf. Coat. Technol. 204(2010)2472-2482.
DOI: 10.1016/j.surfcoat.2010.01.035
Google Scholar
[7]
K. Knipe1, A. Manero II1, S. F. Siddiqui, Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction, Nature Communications. 2014, DOI: 10. 1038/ncomms5559.
DOI: 10.1038/ncomms5559
Google Scholar
[8]
E. Busso, H. Evans, Z. Qian, Effects of breakaway oxidation on local stresses in thermal barrier coatings, Acta Mater. 58(2009)1242-1251.
DOI: 10.1016/j.actamat.2009.10.028
Google Scholar
[9]
C. Mercer, K. Kawagishi, T. Tomimatsu, A comparative investigation of oxide formation on eq (equilibrium) and NiCoCrAlY bond coats under stepped thermal cycling, Surf. Coat. Technol. 205(2011)3066-3072.
DOI: 10.1016/j.surfcoat.2010.11.026
Google Scholar
[10]
M. Wen, E. H. Jordan, M. Gell, Effect of temperature on rumpling and thermally grown oxide stress in an EB-PVD thermal barrier coating, Surf. Coat. Technol. 201(2006)3289-3298.
DOI: 10.1016/j.surfcoat.2006.07.212
Google Scholar
[11]
Y. Zhou, T. Hashida, Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system, Int. J. Solids Struct. 38(2006)4235-4264.
DOI: 10.1016/s0020-7683(00)00309-7
Google Scholar
[12]
D. Rene, J. Melan, M. Mitra, Role of mechanical loads in inducing in-cycle tensile stress in thermally grown oxide. Appl. Phys. Lett. 100 (2012) 111906.
Google Scholar