[1]
H.M. Yu, H.Q. Liu. Research on applications of remanufactory technology for die steel repair. Electric Welding Machine. 2014, 44(11): 150-153.
Google Scholar
[2]
H. Qi, Z. Liu. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material. Physics Procedia. 2012, 39: 903-912.
DOI: 10.1016/j.phpro.2012.10.115
Google Scholar
[3]
H. Qi, I. Kim, J. Mazumder, et al. Environmental aspects of laser-based and conventional tool and die manufacturing. J Clean Prod. 2007, 15(10): 932-943.
DOI: 10.1016/j.jclepro.2005.11.030
Google Scholar
[4]
D. Dong, C. Liu, B. Zhang, et al. Pulsed Nd: YAG laser cladding of high silicon content coating on low silicon steel. Journal of University of Science and Technology Beijing. 2007, 14(4): 321-326.
DOI: 10.1016/s1005-8850(07)60063-2
Google Scholar
[5]
L.L. Gao, X.F. Bian, Y.S. Tian, et al. Effect Of Co On Microstructure And Interfacial Properties Of Fe-Based Laser Cladding. J Iron Steel Res Int. 2009, 16(4): 84-88.
DOI: 10.1016/s1006-706x(09)60066-2
Google Scholar
[6]
J. Choi, Y. Chang. Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tool Manu. 2005, 45: 597-607.
DOI: 10.1016/j.ijmachtools.2004.08.014
Google Scholar
[7]
L. Costa, R. Vilar, T. Reti, et al. Rapid tooling by laser powder deposition: Process simulation using finite element analysis. Acta Mater. 2005, 53(14): 3987-3999.
DOI: 10.1016/j.actamat.2005.05.003
Google Scholar
[8]
S.T. Zhang, J.S. Zhou, B.G. Guo, et al., Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating, Mater. Sci. Eng. A. 2008, 491: 47.
DOI: 10.1016/j.msea.2007.12.015
Google Scholar
[9]
J. Wang, H. Meng, Y.U. Hongying, et al. Surface hardening of Fe-based alloy powders by Nd:YAG laser cladding followed by electrospark deposition with WC-Co cemented carbide. Rare Metals. 2010, 29(4): 380-384.
DOI: 10.1007/s12598-010-0134-z
Google Scholar
[10]
X.Z. Li, Z.D. Liu, Y.T. Wang, et al. Microstructure and corrosion properties of laser cladding MoNi based alloy coatings. Sci. China. 2014, 57(5): 980-989.
DOI: 10.1007/s11431-014-5512-6
Google Scholar
[11]
P.T.H. Nga. Laser cladding TiC particles reinforced Co-based alloy coating on HI3 steel surface and its high-temperature wear property. Kunming University of Science and Technology. (2013).
Google Scholar
[12]
J. Yang, F. Liu, X. Miao, et al. Influence of laser cladding process on the magnetic properties of WC-FeNiCr metal-matrix composite coatings. J Mater Process Tech. 2012, 212(9): 1862-1868.
DOI: 10.1016/j.jmatprotec.2012.04.009
Google Scholar
[13]
M.J. Tobar, J.C. Alvarez, J. Lamas, et al. Laser cladding of tungsten carbides (Spherotene 03) hardfacing alloys for the mining and mineral industry. Appl Surf Sci. 2009, 255(10): 5553-5556.
DOI: 10.1016/j.apsusc.2008.07.198
Google Scholar
[14]
J. Przybyłowicz, J. Kusiński. Structure of laser cladded tungsten carbide composite coatings. Journal of Materials Processing Technology. 2001, 109: 154-160.
DOI: 10.1016/s0924-0136(00)00790-1
Google Scholar
[15]
Y. Pei, H. Cen, C. Wang, et al. Present Development and Prospect of WC-Co Coatings. Corrosion & Protection in Petrochemical Industry. (2011).
Google Scholar
[16]
X. Huang. Research on performance of laser cladding mixed powder with Co-based alloy and WC. Shenyang University of Technology. (2013).
Google Scholar