Modulation of Tribological Performance of Copper by Chemical Modification with H2O2/HCl Mixture

Article Preview

Abstract:

Tribological performance of materials is governed by their surface properties. The capacity to rationally design the surface physico-chemical cues of materials is thus a fundamental prerequisite to confer enhanced lubrication. The present study illustrated that the surface topological and chemical features on copper, which are expected to impact its tribological performance, can be easily modulated by varying the etchant’s concentration. The modified submicron and nanotextured surfaces on copper were characterized by scanning electron microscopy. Their tribological performance was evaluated by ball-on-disk tribometer measurements tester under both the dry and lubricating conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

716-724

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Liu, Sliding friction of copper, Wear 7(1964) 163-174.

Google Scholar

[2] E. Marui, H. Endo, Effect of reciprocating and unidirectional sliding motion on the friction and wear of copper on steel, Wear 249 (2001) 582-591.

DOI: 10.1016/s0043-1648(01)00684-6

Google Scholar

[3] A. Emge, S. Karthikeyan, DA. Rigney, The effects of sliding velocity and sliding time on nanocrystalline tribolayer development and properties in copper, Wear 267 (2009) 562-567.

DOI: 10.1016/j.wear.2008.12.102

Google Scholar

[4] A. Emge, S. Karthikeyan, H. J. Kim, DA. Rigney, The effect of sliding velocity on the tribological behavior of copper, Wear 263 (2007) 614-618.

DOI: 10.1016/j.wear.2007.01.095

Google Scholar

[5] A. Moshkovich, V. Perfilyev, L. Meshi, S. Samuha, S. Cohen, H. Cohen, A. Laikhtman, L. Rapoport, Friction, wear and structure of Cu samples in the lubricated steady friction state, Tribol. Int. 46(2012) 154-160.

DOI: 10.1016/j.triboint.2011.03.013

Google Scholar

[6] A. Moshkovich, V. Perfilyev, I. Lapsker, L. RapoportStribeck curve under friction of copper samples in the steady friction state, Tribol. Lett. 37(2010) 645-653.

DOI: 10.1007/s11249-009-9562-z

Google Scholar

[7] A. Moshkovich, I. Lapsker, A. Laikhtman, V. Perfilyev, L. Rapoport, The Failure and Damage Mechanisms Under Friction of Copper in the EHL and Mixed EHL Regions, Tribol. Lett. 51 (2013) 57-64.

DOI: 10.1007/s11249-013-0145-7

Google Scholar

[8] R. Jisa, A. Ristic, J. Brenner, T. Lebersorger, S. Ilo, H. Neumayer, F. Franek, Effectiveness of lubricant additives for copper-alloy-steel sliding contacts, Lubr. Sci. 22 (2010): 183-193.

DOI: 10.1002/ls.118

Google Scholar

[9] M. Goto, A. Kasahara, M. Tosa, Low frictional property of copper oxide thin films optimised using a combinatorial sputter coating system, Appl. Surf. Sci. 252 (2006) 2482-2487.

DOI: 10.1016/j.apsusc.2005.03.236

Google Scholar

[10] M. Goto, A. Kasahara, T. Oishi, Y. Konishi, M. Tosa, Low frictional coating of copper oxide with preferred crystal orientation, Tribol. Lett. 17(2004) 51-54.

DOI: 10.1023/b:tril.0000017418.50533.b6

Google Scholar

[11] M. Goto, A. Kasahara, T. Oishi, Y. Konishi, M. Tosa, Lubricative coatings of copper oxide for aerospace applications, J. Appl. Phys. 94 (2003) 2110-2114.

DOI: 10.1063/1.1588355

Google Scholar

[12] Y. Wan, Y. Wang, Z. Xu, J. Pu, C. Qi, Friction behavior of in situ hydrothermal fabrication of sulfide film on copper, Appl. Surf. Sci. 258 (2012) 6013-6017.

DOI: 10.1016/j.apsusc.2012.02.095

Google Scholar

[13] S. Duheisat, S. Al-Rawashdeh, A. S. El-Amoush, Sliding friction wear of hydrogenated pure copper, Surface. Eng. 23 (2007) 464-469.

DOI: 10.1179/174329406x98467

Google Scholar

[14] O. Çakır, H. Temel, M. Kiyak, Chemical etching of Cu-ETP copper, J. Mater. Process. Tech. 162 (2005) 275-279.

DOI: 10.1016/j.jmatprotec.2005.02.035

Google Scholar

[15] O. Çakır, Copper etching with cupric chloride and regeneration of waste etchant, J. Mater. Process. Tech. 175(2006) 63-68.

DOI: 10.1016/j.jmatprotec.2005.04.024

Google Scholar

[16] E. B. Saubestre, Copper etching in ferric chloride, Ind. Eng. Chem. 51(1959) 288-290.

DOI: 10.1021/ie51394a037

Google Scholar

[17] T. Du, D. Tamboli, V. Desai, S. Seal, Mechanism of copper removal during CMP in acidic H2O2 slurry,J. Electrochem. Soc. 151(2004) G230-G235.

DOI: 10.1149/1.1648029

Google Scholar

[18] L. Liu, F. Xu, L. Ma, Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets, J. Phys. Chem. C. 116 (2012) 18722-18727.

DOI: 10.1021/jp302794p

Google Scholar

[19] F. Gao, O. Furlong, P. V. Kotvis, W. T. Tysoe, Tribological properties of films formed by the reaction of carbon tetrachloride with iron, Tribol. Lett. 20 (2005) 171-176.

DOI: 10.1007/s11249-005-8313-z

Google Scholar

[20] P.V. Kotvis, J. Lara, K. Surerus, W.T. Tysoe, The nature of the lubricating films formed by carbon tetrachloride under conditions of extreme pressure, Wear 201(1996) 10-14.

DOI: 10.1016/s0043-1648(95)06844-9

Google Scholar