[1]
T. Liu, Sliding friction of copper, Wear 7(1964) 163-174.
Google Scholar
[2]
E. Marui, H. Endo, Effect of reciprocating and unidirectional sliding motion on the friction and wear of copper on steel, Wear 249 (2001) 582-591.
DOI: 10.1016/s0043-1648(01)00684-6
Google Scholar
[3]
A. Emge, S. Karthikeyan, DA. Rigney, The effects of sliding velocity and sliding time on nanocrystalline tribolayer development and properties in copper, Wear 267 (2009) 562-567.
DOI: 10.1016/j.wear.2008.12.102
Google Scholar
[4]
A. Emge, S. Karthikeyan, H. J. Kim, DA. Rigney, The effect of sliding velocity on the tribological behavior of copper, Wear 263 (2007) 614-618.
DOI: 10.1016/j.wear.2007.01.095
Google Scholar
[5]
A. Moshkovich, V. Perfilyev, L. Meshi, S. Samuha, S. Cohen, H. Cohen, A. Laikhtman, L. Rapoport, Friction, wear and structure of Cu samples in the lubricated steady friction state, Tribol. Int. 46(2012) 154-160.
DOI: 10.1016/j.triboint.2011.03.013
Google Scholar
[6]
A. Moshkovich, V. Perfilyev, I. Lapsker, L. RapoportStribeck curve under friction of copper samples in the steady friction state, Tribol. Lett. 37(2010) 645-653.
DOI: 10.1007/s11249-009-9562-z
Google Scholar
[7]
A. Moshkovich, I. Lapsker, A. Laikhtman, V. Perfilyev, L. Rapoport, The Failure and Damage Mechanisms Under Friction of Copper in the EHL and Mixed EHL Regions, Tribol. Lett. 51 (2013) 57-64.
DOI: 10.1007/s11249-013-0145-7
Google Scholar
[8]
R. Jisa, A. Ristic, J. Brenner, T. Lebersorger, S. Ilo, H. Neumayer, F. Franek, Effectiveness of lubricant additives for copper-alloy-steel sliding contacts, Lubr. Sci. 22 (2010): 183-193.
DOI: 10.1002/ls.118
Google Scholar
[9]
M. Goto, A. Kasahara, M. Tosa, Low frictional property of copper oxide thin films optimised using a combinatorial sputter coating system, Appl. Surf. Sci. 252 (2006) 2482-2487.
DOI: 10.1016/j.apsusc.2005.03.236
Google Scholar
[10]
M. Goto, A. Kasahara, T. Oishi, Y. Konishi, M. Tosa, Low frictional coating of copper oxide with preferred crystal orientation, Tribol. Lett. 17(2004) 51-54.
DOI: 10.1023/b:tril.0000017418.50533.b6
Google Scholar
[11]
M. Goto, A. Kasahara, T. Oishi, Y. Konishi, M. Tosa, Lubricative coatings of copper oxide for aerospace applications, J. Appl. Phys. 94 (2003) 2110-2114.
DOI: 10.1063/1.1588355
Google Scholar
[12]
Y. Wan, Y. Wang, Z. Xu, J. Pu, C. Qi, Friction behavior of in situ hydrothermal fabrication of sulfide film on copper, Appl. Surf. Sci. 258 (2012) 6013-6017.
DOI: 10.1016/j.apsusc.2012.02.095
Google Scholar
[13]
S. Duheisat, S. Al-Rawashdeh, A. S. El-Amoush, Sliding friction wear of hydrogenated pure copper, Surface. Eng. 23 (2007) 464-469.
DOI: 10.1179/174329406x98467
Google Scholar
[14]
O. Çakır, H. Temel, M. Kiyak, Chemical etching of Cu-ETP copper, J. Mater. Process. Tech. 162 (2005) 275-279.
DOI: 10.1016/j.jmatprotec.2005.02.035
Google Scholar
[15]
O. Çakır, Copper etching with cupric chloride and regeneration of waste etchant, J. Mater. Process. Tech. 175(2006) 63-68.
DOI: 10.1016/j.jmatprotec.2005.04.024
Google Scholar
[16]
E. B. Saubestre, Copper etching in ferric chloride, Ind. Eng. Chem. 51(1959) 288-290.
DOI: 10.1021/ie51394a037
Google Scholar
[17]
T. Du, D. Tamboli, V. Desai, S. Seal, Mechanism of copper removal during CMP in acidic H2O2 slurry,J. Electrochem. Soc. 151(2004) G230-G235.
DOI: 10.1149/1.1648029
Google Scholar
[18]
L. Liu, F. Xu, L. Ma, Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets, J. Phys. Chem. C. 116 (2012) 18722-18727.
DOI: 10.1021/jp302794p
Google Scholar
[19]
F. Gao, O. Furlong, P. V. Kotvis, W. T. Tysoe, Tribological properties of films formed by the reaction of carbon tetrachloride with iron, Tribol. Lett. 20 (2005) 171-176.
DOI: 10.1007/s11249-005-8313-z
Google Scholar
[20]
P.V. Kotvis, J. Lara, K. Surerus, W.T. Tysoe, The nature of the lubricating films formed by carbon tetrachloride under conditions of extreme pressure, Wear 201(1996) 10-14.
DOI: 10.1016/s0043-1648(95)06844-9
Google Scholar