[1]
E. Cuce, P.M. Cuce, A comprehensive review on solar cookers, Appl. Energy 102 (2013) 1399-1421.
DOI: 10.1016/j.apenergy.2012.09.002
Google Scholar
[2]
R. Levinson, P. Berdahl, H. Akbari, W. Miller, I. Joedicke, J. Reilly, Y. Suzuki, M. Vondran, Methods of creating solar-reflective non white surfaces and their application to residential roofing materials, Sol. Energy Mater. Sol. Cells 91 (2007).
DOI: 10.1016/j.solmat.2006.06.062
Google Scholar
[3]
Y. Mastai, Y. Diamant, S.T. Aruna, A. Zaban, TiO2 nanocrystalline pigmented polyethylene foils for radiative cooling applications: synthesis and characterization, Langmuir 17 (2001) 7118-7123.
DOI: 10.1021/la010370g
Google Scholar
[4]
X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv, G. Jie, Effect of antimony doped tin oxide on behaviors of waterborne polyurethane acrylate nanocomposite coatings, Surf. Coat. Tech. 205 (2010) 1864-1869.
DOI: 10.1016/j.surfcoat.2010.08.053
Google Scholar
[5]
X. Lu, G. Yu, Q. Tan, B. Hu, J. Zhang, Q. Dong, Preparation and characterization of transparent fluorocarbon emulsion doped with antimony tin oxide and TiO2 as thermal-insulating and self-cleaning coating, J. Coat. Technol. Res. 11 (2014) 567-574.
DOI: 10.1007/s11998-013-9550-y
Google Scholar
[6]
J. Feng, B. Huang, M. Zhong, Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding, J. Colloid Interface Sci. 336 (2009) 268-272.
DOI: 10.1016/j.jcis.2009.03.025
Google Scholar
[7]
X.C. Chen, Synthesis and characterization of ATO/SiO2 nanocomposite coating obtained by sol-gel method, Mater. Lett. 59 (2005) 1239-1242.
DOI: 10.1016/j.matlet.2004.12.033
Google Scholar
[8]
Z. Dai, Z. Li, L. Li, G. Xu, Synthesis and thermal properties of antimony doped tin oxide/waterborne polyurethane nanocomposite films as heat insulating materials, Polym. Adv. Technol. 22 (2011) 1905-(1911).
DOI: 10.1002/pat.1690
Google Scholar
[9]
K. Lu, Z. Ji, Z. Kong, H. Li, J. Zhang, Preparation and thermal insulating properties of antimony doped nano-SnO2/waterborne polyurethane composite coatings, J. Inorg. Mater. 27 (2012) 1117-1120.
DOI: 10.3724/sp.j.1077.2012.12231
Google Scholar
[10]
R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review, Energy Buildings 43 (2011) 761-769.
DOI: 10.1016/j.enbuild.2010.12.012
Google Scholar
[11]
S.S. Kistler, Coherent expanded aerogels and jellies, Nature 127 (1931) 741.
DOI: 10.1038/127741a0
Google Scholar
[12]
C. Buratti, E. Moretti, Glazing systems with silica aerogel for energy saving in buildings, Appl. Energy 98 (2012) 396-403.
DOI: 10.1016/j.apenergy.2012.03.062
Google Scholar
[13]
W.C. Ackerman, M. Vlachos, S. Rouanet, J. Fruendt, Use of surface treated aerogels derived from various silica precursors in translucent insulation panels, J. Non-cryst. Solids 285 (2001) 264-271.
DOI: 10.1016/s0022-3093(01)00465-3
Google Scholar
[14]
J.M. Schultz, K.I. Jensen, F.H. Kristiansen, Super insulating aerogel glazing, Sol. Energy Mater. Sol. Cells 89 (2005) 275-285.
DOI: 10.1016/j.solmat.2005.01.016
Google Scholar
[15]
Z. Shao, X. He, Z. Niu, T. Huang, X. Cheng, Y. Zhang, Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths, Mater. Chem. Phys. 162 (2015) 346-353.
DOI: 10.1016/j.matchemphys.2015.05.077
Google Scholar
[16]
M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, F.J. Pötter, Highly insulating aerogel glazing for solar energy usage, Solar Energy 72 (2002) 21-29.
DOI: 10.1016/s0038-092x(01)00086-x
Google Scholar
[17]
G.N. Manvi, A.R. Singh, R.N. Jagtap, D.C. Kothari, Isocyanurate based fluorinated polyurethane dispersion for anti-graffiti coatings, Prog. Org. Coat. 75 (2012) 139-146.
DOI: 10.1016/j.porgcoat.2012.04.007
Google Scholar
[18]
L.F. Su, L. Miao, S. Tanemura, G. Xu, Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications, Sci. Technol. Adv. Mater. 13 (2012) 035003.
DOI: 10.1088/1468-6996/13/3/035003
Google Scholar
[19]
L.F. Su, L. Miao, G. Xu, S. Tanemura, Super thermal insulating SiO2 cryogles prepared by vacuum freeze drying, Adv. Mater. Res. 105-106 (2010) 851-854.
DOI: 10.4028/www.scientific.net/amr.105-106.851
Google Scholar
[20]
L. Wang, J. Hang, L. Shi, X. Sun, F. Xu, Preparation and characterization of NIR cutoff antimony doped tin oxide/hybrid silica coatings, Mater. Lett. 87 (2012) 35-38.
DOI: 10.1016/j.matlet.2012.07.065
Google Scholar
[21]
Y.X. Shi, Z.N. Song, W.D. Zhang, J.R. Song, J. Qu, Z.D. Wang, Y.W. Li, L.J. Xu, J. Lin, Physicochemical properties of direct-resistant cool white coatings for building energy efficiency, Sol. Energy Mater. Sol. Cells 110 (2013) 133-139.
DOI: 10.1016/j.solmat.2012.12.011
Google Scholar
[22]
B.P. Jelle, Solar radiation glazing factors for windows panes, glass structures and electrochromic windows in buildings-measurement and calculation, Sol. Energy Mater. Sol. Cells 116 (2013) 291-323.
DOI: 10.1016/j.solmat.2013.04.032
Google Scholar
[23]
C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review, Sol. Energy Mater. Sol. Cells 91 (2007) 1529-1598.
DOI: 10.1016/j.solmat.2007.04.031
Google Scholar
[24]
J. Qu, J. Song, J. Qin, Z. Song, W. Zhang, Y. Shi, T. Zhang, H. Zhang, R. Zhang, Z. He, X. Xue, Transparent thermal insulation coatings for energy efficient glass windows and curtain walls, Energy Buildings 77 (2014) 1-10.
DOI: 10.1016/j.enbuild.2014.03.032
Google Scholar