SiO2 Cryogel Dispersion in Organic Solvent for the Application as Transparent Heat Insulation Coating on PET

Article Preview

Abstract:

SiO2 cryogels (SCG) with a low thermal conductivity was used for transparent heat insulation coatings. SCG dispersion in organic solvent was prepared by sand milling, and the paint was composed of SCG dispersion as a functional filler and polyacylic resin as a binder. The paint was coated on PET film and then pasted on a glass substrate to form the filmed glass. The results showed that the particle sizes of SCG in the dispersion were almost below 100 nm, and the organic dispersion had a good stability. The coating with SCG dispersion exhibited a remarkable shielding effect in the near infrared waveband as well as a high transmittance above 80% in the visible light. The heat insulation temperature of SCG filmed glass was 4 °C compared with the blank glass. The transparent heat insulation coating with SCG will be developed for solar control and energy saving applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

732-737

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Cuce, P.M. Cuce, A comprehensive review on solar cookers, Appl. Energy 102 (2013) 1399-1421.

DOI: 10.1016/j.apenergy.2012.09.002

Google Scholar

[2] R. Levinson, P. Berdahl, H. Akbari, W. Miller, I. Joedicke, J. Reilly, Y. Suzuki, M. Vondran, Methods of creating solar-reflective non white surfaces and their application to residential roofing materials, Sol. Energy Mater. Sol. Cells 91 (2007).

DOI: 10.1016/j.solmat.2006.06.062

Google Scholar

[3] Y. Mastai, Y. Diamant, S.T. Aruna, A. Zaban, TiO2 nanocrystalline pigmented polyethylene foils for radiative cooling applications: synthesis and characterization, Langmuir 17 (2001) 7118-7123.

DOI: 10.1021/la010370g

Google Scholar

[4] X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv, G. Jie, Effect of antimony doped tin oxide on behaviors of waterborne polyurethane acrylate nanocomposite coatings, Surf. Coat. Tech. 205 (2010) 1864-1869.

DOI: 10.1016/j.surfcoat.2010.08.053

Google Scholar

[5] X. Lu, G. Yu, Q. Tan, B. Hu, J. Zhang, Q. Dong, Preparation and characterization of transparent fluorocarbon emulsion doped with antimony tin oxide and TiO2 as thermal-insulating and self-cleaning coating, J. Coat. Technol. Res. 11 (2014) 567-574.

DOI: 10.1007/s11998-013-9550-y

Google Scholar

[6] J. Feng, B. Huang, M. Zhong, Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding, J. Colloid Interface Sci. 336 (2009) 268-272.

DOI: 10.1016/j.jcis.2009.03.025

Google Scholar

[7] X.C. Chen, Synthesis and characterization of ATO/SiO2 nanocomposite coating obtained by sol-gel method, Mater. Lett. 59 (2005) 1239-1242.

DOI: 10.1016/j.matlet.2004.12.033

Google Scholar

[8] Z. Dai, Z. Li, L. Li, G. Xu, Synthesis and thermal properties of antimony doped tin oxide/waterborne polyurethane nanocomposite films as heat insulating materials, Polym. Adv. Technol. 22 (2011) 1905-(1911).

DOI: 10.1002/pat.1690

Google Scholar

[9] K. Lu, Z. Ji, Z. Kong, H. Li, J. Zhang, Preparation and thermal insulating properties of antimony doped nano-SnO2/waterborne polyurethane composite coatings, J. Inorg. Mater. 27 (2012) 1117-1120.

DOI: 10.3724/sp.j.1077.2012.12231

Google Scholar

[10] R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review, Energy Buildings 43 (2011) 761-769.

DOI: 10.1016/j.enbuild.2010.12.012

Google Scholar

[11] S.S. Kistler, Coherent expanded aerogels and jellies, Nature 127 (1931) 741.

DOI: 10.1038/127741a0

Google Scholar

[12] C. Buratti, E. Moretti, Glazing systems with silica aerogel for energy saving in buildings, Appl. Energy 98 (2012) 396-403.

DOI: 10.1016/j.apenergy.2012.03.062

Google Scholar

[13] W.C. Ackerman, M. Vlachos, S. Rouanet, J. Fruendt, Use of surface treated aerogels derived from various silica precursors in translucent insulation panels, J. Non-cryst. Solids 285 (2001) 264-271.

DOI: 10.1016/s0022-3093(01)00465-3

Google Scholar

[14] J.M. Schultz, K.I. Jensen, F.H. Kristiansen, Super insulating aerogel glazing, Sol. Energy Mater. Sol. Cells 89 (2005) 275-285.

DOI: 10.1016/j.solmat.2005.01.016

Google Scholar

[15] Z. Shao, X. He, Z. Niu, T. Huang, X. Cheng, Y. Zhang, Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths, Mater. Chem. Phys. 162 (2015) 346-353.

DOI: 10.1016/j.matchemphys.2015.05.077

Google Scholar

[16] M. Reim, A. Beck, W. Körner, R. Petricevic, M. Glora, M. Weth, T. Schliermann, J. Fricke, Ch. Schmidt, F.J. Pötter, Highly insulating aerogel glazing for solar energy usage, Solar Energy 72 (2002) 21-29.

DOI: 10.1016/s0038-092x(01)00086-x

Google Scholar

[17] G.N. Manvi, A.R. Singh, R.N. Jagtap, D.C. Kothari, Isocyanurate based fluorinated polyurethane dispersion for anti-graffiti coatings, Prog. Org. Coat. 75 (2012) 139-146.

DOI: 10.1016/j.porgcoat.2012.04.007

Google Scholar

[18] L.F. Su, L. Miao, S. Tanemura, G. Xu, Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications, Sci. Technol. Adv. Mater. 13 (2012) 035003.

DOI: 10.1088/1468-6996/13/3/035003

Google Scholar

[19] L.F. Su, L. Miao, G. Xu, S. Tanemura, Super thermal insulating SiO2 cryogles prepared by vacuum freeze drying, Adv. Mater. Res. 105-106 (2010) 851-854.

DOI: 10.4028/www.scientific.net/amr.105-106.851

Google Scholar

[20] L. Wang, J. Hang, L. Shi, X. Sun, F. Xu, Preparation and characterization of NIR cutoff antimony doped tin oxide/hybrid silica coatings, Mater. Lett. 87 (2012) 35-38.

DOI: 10.1016/j.matlet.2012.07.065

Google Scholar

[21] Y.X. Shi, Z.N. Song, W.D. Zhang, J.R. Song, J. Qu, Z.D. Wang, Y.W. Li, L.J. Xu, J. Lin, Physicochemical properties of direct-resistant cool white coatings for building energy efficiency, Sol. Energy Mater. Sol. Cells 110 (2013) 133-139.

DOI: 10.1016/j.solmat.2012.12.011

Google Scholar

[22] B.P. Jelle, Solar radiation glazing factors for windows panes, glass structures and electrochromic windows in buildings-measurement and calculation, Sol. Energy Mater. Sol. Cells 116 (2013) 291-323.

DOI: 10.1016/j.solmat.2013.04.032

Google Scholar

[23] C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review, Sol. Energy Mater. Sol. Cells 91 (2007) 1529-1598.

DOI: 10.1016/j.solmat.2007.04.031

Google Scholar

[24] J. Qu, J. Song, J. Qin, Z. Song, W. Zhang, Y. Shi, T. Zhang, H. Zhang, R. Zhang, Z. He, X. Xue, Transparent thermal insulation coatings for energy efficient glass windows and curtain walls, Energy Buildings 77 (2014) 1-10.

DOI: 10.1016/j.enbuild.2014.03.032

Google Scholar