[1]
H.W. Mc, A.R. Bentley, The development of high strength and toughness fibrous microstructures in Tungsten-Nickel-Iron alloys for kinetic energy penetrator application, Proceeding of Tungsten Refractory Metal. 15 (5) (1994) 37-45.
Google Scholar
[2]
T. Wang, W.L. Yu, S.L. Wang, Burrow weapons to the current situation and trend of development of abroad, Missile and space launch technology. 5 (2005) 51-56.
Google Scholar
[3]
S. Park, K. Kim, Lee S, Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying, Metall. Mater. Trans. A. 32 (2001) 2011-(2020).
DOI: 10.1007/s11661-001-0013-1
Google Scholar
[4]
Z.H. Zhang, F.C. Wang, Hydrostatic extrusion deformation and fracture of 93 tungsten alloy is studied, Rare metal materials science and engineering. 34 (12) (2005) 1990-(1993).
Google Scholar
[5]
D.P. Xiang, L. Ding, Y.Y. Li, J.B. Li, X.Q. Li, C. Li, Microstructure and mechanical properties of fine-grained W–7Ni–3Fe heavy alloy by spark plasma sintering. Mater. Sci. Eng. A. 551 (2012) 95-99.
DOI: 10.1016/j.msea.2012.04.099
Google Scholar
[6]
B.S. Zhang, Z.J. Kang, High-density tungsten alloy characteristics and its application, Chinese tungsten industry. 1 (1999) 178-182.
Google Scholar
[7]
C.X. Zhang, L.B. Qin, Penetrator with the latest progress in the study of tungsten alloy in our country and prospect, Powder metallurgy materials science and engineering. 11 (2006) 127-132.
Google Scholar
[8]
J.F. Yu, The application of tungsten-From the electronic materials to military ammunition, Chinese tungsten industry. 16 (2001) 39-41.
Google Scholar
[9]
D. Lv, W.P. Zhou, The development of China's tungsten heavy alloys, Chinese tungsten industry. 24 (2009) 109.
Google Scholar
[10]
Z.W. Zhang, G. Ran, J.G. Zhou. The research progress of high-density tungsten alloy, Heat Treat. Met. 28 (2003) 9.
Google Scholar
[11]
B.S. Zhang, Z.J. Kang, The penetrating characteristics and its applications of the high-density tungsten alloys, Chinese tungsten industry, 14 (1999) 178-181.
Google Scholar
[12]
Y.Y. Li, K. Hu, X.Q. Li, X. Ai, S.G. Qu, Fine-grained 93W–5. 6Ni–1. 4Fe heavy alloys with enhanced performance prepared by spark plasma sintering, Mater. Sci. Eng. A. 573 (2013) 245-252.
DOI: 10.1016/j.msea.2013.02.069
Google Scholar
[13]
L. Ding, D.P. Xiang, Y.Y. Li, C. Li, J.B. Li, Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering, Int. J. Refract. Met. Hard Mater. 33 (2012) 65-69.
DOI: 10.1016/j.ijrmhm.2012.02.017
Google Scholar
[14]
V.N. Chuvildeev, D.V. Panov, M.S. Boldin, A.V. Nokhrin, Yu.V. Blagoveshchensky, N.V. Sakharov, S.V. Shotin, D.N. Kotkov, Structure and properties of advanced materials obtained by Spark Plasma Sintering, Acta Astronautica. 109 (2015) 172-176.
DOI: 10.1016/j.actaastro.2014.11.008
Google Scholar
[15]
M. Tokita, Chapter 11. 2. 3—spark plasma sintering (SPS) method, systems, and applications, Handbook of Advanced Ceramics, second edition, 2013, 1149-1177.
DOI: 10.1016/b978-0-12-385469-8.00060-5
Google Scholar
[16]
Z.J. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina, J. Am. Ceram. Soc. 85 (2002) 1921-(1927).
DOI: 10.1111/j.1151-2916.2002.tb00381.x
Google Scholar
[17]
T. Takeuchi, M. Tabuchi, Y. Suyama, H. Kageyama, Preparation of dense BaTiO3 ceramics with submicrometer grains by spark plasma sintering, J. Am. Ceram. Soc. 82 (1999) 939-943.
DOI: 10.1111/j.1151-2916.1999.tb01857.x
Google Scholar
[18]
K. Hu, X.Q. Li, C. Yang, Y.Y. Li, Densification and microstructure evolution during SPS consolidation process in W-Ni-Fe system, Trans. Nonferrous Met. Soc. China. 21 (2011) 493-501.
DOI: 10.1016/s1003-6326(11)60742-5
Google Scholar