[1]
A. Dehghan-Manshadi, R.J. Dippenaar, Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy, Materials Science and Engineering: A, 528 (2011) 1833-1839.
DOI: 10.1016/j.msea.2010.09.061
Google Scholar
[2]
J.C. Williams, E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Materialia, 51 (2003) 5775-5799.
Google Scholar
[3]
N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V, Journal of Alloys and Compounds, 486 (2009) 162-167.
DOI: 10.1016/j.jallcom.2009.06.172
Google Scholar
[4]
C. -L. Li, X. -J. Mi, W. -J. Ye, S. -X. Hui, D. -G. Lee, Y. -T. Lee, Influence of heat treatment on microstructure and tensile property of a new high strength beta alloy Ti–2Al–9. 2Mo–2Fe, Materials Science and Engineering: A, 580 (2013) 250-256.
DOI: 10.1016/j.msea.2013.04.118
Google Scholar
[5]
G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara Rao, Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures, Materials & Design, 47 (2013).
DOI: 10.1016/j.matdes.2012.11.053
Google Scholar
[6]
C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy, Materials Science and Engineering: A, 586 (2013) 323-329.
DOI: 10.1016/j.msea.2013.08.032
Google Scholar
[7]
R.R. Boyer, R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, Journal of Materials Engineering and Performance, 14 (2005) 681-685.
DOI: 10.1361/105994905x75448
Google Scholar
[8]
J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333, Materials & Design, 49 (2013) 945-952.
DOI: 10.1016/j.matdes.2013.02.044
Google Scholar
[9]
N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson, Thermomechanical processing of Ti–5Al–5Mo–5V–3Cr, Materials Science and Engineering: A, 490 (2008) 369-377.
DOI: 10.1016/j.msea.2008.01.055
Google Scholar
[10]
C. Li, X. -y. Zhang, K. -c. Zhou, C. -q. Peng, Relationship between lamellar α evolution and flow behavior during isothermal deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy, Materials Science and Engineering: A, 558 (2012) 668-674.
DOI: 10.1016/j.msea.2012.08.074
Google Scholar
[11]
Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, Y. Chen, Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Materials & Design, 55 (2014) 183-190.
DOI: 10.1016/j.matdes.2013.09.070
Google Scholar
[12]
M. Wan, Y. Zhao, W. Zeng, G. Cai, Effects of cold pre-deformation on aging behavior and mechanical properties of Ti-1300 alloy, Journal of Alloys and Compounds, 619 (2015) 383-388.
DOI: 10.1016/j.jallcom.2014.09.064
Google Scholar
[13]
X. Zhang, H. Kou, J. Li, F. Zhang, L. Zhou, Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy, Journal of Alloys and Compounds, 577 (2013) 516-522.
DOI: 10.1016/j.jallcom.2013.06.180
Google Scholar
[14]
C. Li, X. -y. Zhang, Z. -y. Li, K. -C. Zhou, Hot Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Near β Titanium Alloys Containing Thin and Thick Lamellar α Phase, Materials Science and Engineering: A, 573 (2013) 75-83.
DOI: 10.1016/j.msea.2013.02.033
Google Scholar
[15]
Y. Chen, Z. Du, S. Xiao, L. Xu, J. Tian, Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy, Journal of Alloys and Compounds, 586 (2014) 588-592.
DOI: 10.1016/j.jallcom.2013.10.096
Google Scholar
[16]
K. Wang, M.Q. Li, Morphology and crystallographic orientation of the secondary α phase in a compressed α/β titanium alloy, Scripta Materialia, 68 (2013) 964-967.
DOI: 10.1016/j.scriptamat.2013.02.048
Google Scholar
[17]
L.A.D. Orlova L M, Belozub G P., Metallographic study of β-solid solution decomposition for titanium alloy VT22, Metal Science and Heat Treatment, 28 (1986) 73-77.
DOI: 10.1007/bf00735554
Google Scholar
[18]
S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0. 5Fe β titanium alloy, Acta Materialia, 57 (2009) 2136-2147.
DOI: 10.1016/j.actamat.2009.01.007
Google Scholar
[19]
S. k.V. V., Structural conversions in VT22 titanium alloy during aging, Metal science and heat treatment, 34 (1992) 534-539.
DOI: 10.1007/bf00775008
Google Scholar
[20]
S. Nag, R. Banerjee, J. Hwang, M. Harper, H. Fraser, Elemental partitioning between α and β phases in the Ti–5Al–5Mo–5V–3Cr–0. 5 Fe (Ti-5553) alloy, Philosophical Magazine, 89 (2009) 535-552.
DOI: 10.1080/14786430802613158
Google Scholar
[21]
M. Salib, J. Teixeira, L. Germain, E. Lamielle, N. Gey, E. Aeby-Gautier, Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy, Acta Materialia, 61 (2013).
DOI: 10.1016/j.actamat.2013.03.007
Google Scholar
[22]
S.M.C. van Bohemen, A. Kamp, R.H. Petrov, L.A.I. Kestens, J. Sietsma, Nucleation and variant selection of secondary α plates in a β Ti alloy, Acta Materialia, 56 (2008) 5907-5914.
DOI: 10.1016/j.actamat.2008.08.016
Google Scholar