[1]
Kyu Sik Kim, Kee Ahn Lee, Jong Ha Kim, Si Woo Park, Kyu Sang Cho. Manufacturing and High Temperature Mechanical Properties of Inconel 713C by Using Metal Injection Molding[J]. Advanced Materials Research, 2012, 602-604: 627-630.
DOI: 10.4028/www.scientific.net/amr.602-604.627
Google Scholar
[2]
Wu K, Liu GQ, Hu BF, Li F, Zhang YW, Tao Y, et al. Characterization of hot deformation behavior of a new Ni-Cr-Co based P/M superalloy[J]. Mater charact, 2010, 61: 330-340.
DOI: 10.1016/j.matchar.2009.12.013
Google Scholar
[3]
P.A. Davies, G.R. Dunstan, A.C. Hayward, R.I.L. Howells. Development of master alloy powders, including nickel-based superalloys, for Metal Injection Molding (MIM)[C]. Proc. Int. Conf. Powder Met. & Particulate Material, 2003, Las Vegas, part 8.
Google Scholar
[4]
H. Wohlfromm,A. Ribbens,J. ter Maat, M. Blömacher. Metal Injection Moulding of Nickel Based Superalloys for High Temperature Applications[C]. EPMA Proceedings PM2003, Valencia, Vol. 3.
Google Scholar
[5]
ZW Xu, CC Jia, CJ Kuang, et al. Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding[J]. Int. J, Miner. Metall, Mater, 2010, 17: 425.
DOI: 10.1007/s12613-010-0335-3
Google Scholar
[6]
Ozgur,H. Ozkan Gulsoy, Ramazan Yilmaz, Fehim Findik. Microstructual and mechanical characterization of injection molding 718 superalloy powder[J]. 2013, 576: 140-153.
Google Scholar
[7]
F. Zupanic,T. Boncina,A. Krizman F.D. Tichelaar. Structure of continuously cast Ni-based superalloy Inconel 713C[J]. Journal of Alloys and Compounds , 2001, 329: 290-297.
DOI: 10.1016/s0925-8388(01)01676-0
Google Scholar
[8]
V.C. Srivastav S.N. Ojha. Effect of aspiration and gas–melt configuration in close coupled nozzle on powder productivity[J]. 2006, 49(3): 213-218.
DOI: 10.1179/174329006x128304
Google Scholar
[9]
P. Dong W.L. Hon X.C. Chang, et al. Amorphous and nanostructured Al85Ni5Y6Co2Fe2 powder prepared by nitrogen gas-atomization[J]. Alloy Compd, 2007, 436: 118.
DOI: 10.1016/j.jallcom.2006.07.032
Google Scholar
[10]
R. Xu,Y.Y. Cui,D. Li, et al. Solidification microstructure of super-α2 alloy prepared by gas atomization[J]. Mater. Sci, 1997, 32: 3821.
Google Scholar
[11]
Srivastava A. K, Ojha S. N, Ranganathan. Microstructural features associated with spray atomization and deposition of Al-Mn-Cr-Si alloy[J]. 2001, 36: 3335.
Google Scholar
[12]
Lavernia E.J. Ayers J.D. Srivatsan,T. S. Rapid solidification processing with specific application to aluminium alloys[J]. International Materials Reviews, 1992, 37(1): 1-44.
DOI: 10.1179/imr.1992.37.1.1
Google Scholar
[13]
YongxiangDai, MinYang, ChangjiangSong, QingyouHan, QijieZhai. Solidification structure of C2. 08Cr24. 43Si1. 19Mn0. 43Fe7. 87 powders fabricated by high pressure gas atomization[J]. Materials characterization, 2010, 116-122.
DOI: 10.1016/j.matchar.2009.11.001
Google Scholar
[14]
F. Duflos J.F. Stohr. Comparison of the quench rates attained in gas-atomized powders and melt-spun ribbons of Co and Ni-base superalloys: influence on resulting microstructures[J]. Mater. Sci, 1982, 17: 3641.
DOI: 10.1007/bf00752209
Google Scholar
[15]
J. Juarez-Islas,Y. Zhou E.J. Lavernia. Spray atomization of two Al–Fe binary alloys: solidification and microstructure characterization[J]. Journal of Materials Science, 1999, 34(6): 1211-1218.
DOI: 10.1023/a:1004509022619
Google Scholar
[16]
Pryds N. H, Pedersen A.S. Rapid solidification of martensitic stainless steel atomized droplets[J]. Metall Mater Trans A, 2002, 33: 3755.
DOI: 10.1007/s11661-002-0248-5
Google Scholar
[17]
Zhao Xinming, Xu Jun, Zhu Xuexin, Zhang Shaoming. Effect of protrusion length of melt delivery tube on gas flow field for supersonic gas atomization[J]. The Chinese journal of nonferrous metals, 2009, 19(5): 967-973.
Google Scholar
[18]
Zhao Xinming, Xu Jun, Zhu Xuexin, Zhang Shaoming. Aspiration pressure varation at the tip of metal delivery tube in the supersonic atomization nozzle[J]. Powder Metallurgy Technology, 2010, 28(1): 22-25.
Google Scholar