Solidification Characterization of K418 Alloy Powders Fabricated by Argon Gas Atomization

Article Preview

Abstract:

The solidification characterization of K418 alloy powders prepared by argon atomization was studied, and thermal parameters of the alloy powder during solidification process were calculated. The results show that powder morphology is spherical shape, the average diameter of the powder is 55μm, the amount of less 100μm powder is about 90 percent, the solidification microstructure of powders particle surface are dentrite and cellular structure. Decreasing the particle size, the microstructures of particle interior change from dentrite in major to cellular structures, and the structure is more uniformed. The length of secondary dentritic arm and the cooling rate as a function of K418 alloy powders size is established, the cooling rate increases with a decrease of the powder particle size, the cooling rate is in the range of 104K.S-1-106K.S-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

788-793

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kyu Sik Kim, Kee Ahn Lee, Jong Ha Kim, Si Woo Park, Kyu Sang Cho. Manufacturing and High Temperature Mechanical Properties of Inconel 713C by Using Metal Injection Molding[J]. Advanced Materials Research, 2012, 602-604: 627-630.

DOI: 10.4028/www.scientific.net/amr.602-604.627

Google Scholar

[2] Wu K, Liu GQ, Hu BF, Li F, Zhang YW, Tao Y, et al. Characterization of hot deformation behavior of a new Ni-Cr-Co based P/M superalloy[J]. Mater charact, 2010, 61: 330-340.

DOI: 10.1016/j.matchar.2009.12.013

Google Scholar

[3] P.A. Davies, G.R. Dunstan, A.C. Hayward, R.I.L. Howells. Development of master alloy powders, including nickel-based superalloys, for Metal Injection Molding (MIM)[C]. Proc. Int. Conf. Powder Met. & Particulate Material, 2003, Las Vegas, part 8.

Google Scholar

[4] H. Wohlfromm,A. Ribbens,J. ter Maat, M. Blömacher. Metal Injection Moulding of Nickel Based Superalloys for High Temperature Applications[C]. EPMA Proceedings PM2003, Valencia, Vol. 3.

Google Scholar

[5] ZW Xu, CC Jia, CJ Kuang, et al. Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding[J]. Int. J, Miner. Metall, Mater, 2010, 17: 425.

DOI: 10.1007/s12613-010-0335-3

Google Scholar

[6] Ozgur,H. Ozkan Gulsoy, Ramazan Yilmaz, Fehim Findik. Microstructual and mechanical characterization of injection molding 718 superalloy powder[J]. 2013, 576: 140-153.

Google Scholar

[7] F. Zupanic,T. Boncina,A. Krizman F.D. Tichelaar. Structure of continuously cast Ni-based superalloy Inconel 713C[J]. Journal of Alloys and Compounds , 2001, 329: 290-297.

DOI: 10.1016/s0925-8388(01)01676-0

Google Scholar

[8] V.C. Srivastav S.N. Ojha. Effect of aspiration and gas–melt configuration in close coupled nozzle on powder productivity[J]. 2006, 49(3): 213-218.

DOI: 10.1179/174329006x128304

Google Scholar

[9] P. Dong W.L. Hon X.C. Chang, et al. Amorphous and nanostructured Al85Ni5Y6Co2Fe2 powder prepared by nitrogen gas-atomization[J]. Alloy Compd, 2007, 436: 118.

DOI: 10.1016/j.jallcom.2006.07.032

Google Scholar

[10] R. Xu,Y.Y. Cui,D. Li, et al. Solidification microstructure of super-α2 alloy prepared by gas atomization[J]. Mater. Sci, 1997, 32: 3821.

Google Scholar

[11] Srivastava A. K, Ojha S. N, Ranganathan. Microstructural features associated with spray atomization and deposition of Al-Mn-Cr-Si alloy[J]. 2001, 36: 3335.

Google Scholar

[12] Lavernia E.J. Ayers J.D. Srivatsan,T. S. Rapid solidification processing with specific application to aluminium alloys[J]. International Materials Reviews, 1992, 37(1): 1-44.

DOI: 10.1179/imr.1992.37.1.1

Google Scholar

[13] YongxiangDai, MinYang, ChangjiangSong, QingyouHan, QijieZhai. Solidification structure of C2. 08Cr24. 43Si1. 19Mn0. 43Fe7. 87 powders fabricated by high pressure gas atomization[J]. Materials characterization, 2010, 116-122.

DOI: 10.1016/j.matchar.2009.11.001

Google Scholar

[14] F. Duflos J.F. Stohr. Comparison of the quench rates attained in gas-atomized powders and melt-spun ribbons of Co and Ni-base superalloys: influence on resulting microstructures[J]. Mater. Sci, 1982, 17: 3641.

DOI: 10.1007/bf00752209

Google Scholar

[15] J. Juarez-Islas,Y. Zhou E.J. Lavernia. Spray atomization of two Al–Fe binary alloys: solidification and microstructure characterization[J]. Journal of Materials Science, 1999, 34(6): 1211-1218.

DOI: 10.1023/a:1004509022619

Google Scholar

[16] Pryds N. H, Pedersen A.S. Rapid solidification of martensitic stainless steel atomized droplets[J]. Metall Mater Trans A, 2002, 33: 3755.

DOI: 10.1007/s11661-002-0248-5

Google Scholar

[17] Zhao Xinming, Xu Jun, Zhu Xuexin, Zhang Shaoming. Effect of protrusion length of melt delivery tube on gas flow field for supersonic gas atomization[J]. The Chinese journal of nonferrous metals, 2009, 19(5): 967-973.

Google Scholar

[18] Zhao Xinming, Xu Jun, Zhu Xuexin, Zhang Shaoming. Aspiration pressure varation at the tip of metal delivery tube in the supersonic atomization nozzle[J]. Powder Metallurgy Technology, 2010, 28(1): 22-25.

Google Scholar