Effects of Combined Addition of Cr3C2 and NbC on Microstructure and Properties of Cemented Carbides Prepared by WС-Co Composite Powder

Article Preview

Abstract:

With addition various contents of combined grain growth inhibitors Cr3C2 and NbC into the ultrafine WC-Co6% composite powder, and the effects of codoped Cr3C2 and NbC addition on microstructure and properties of the alloys have been investigated by X-ray diffraction, scanning electron microscopy. The results showed that increasing the content of inhibitors in the composite powder, the abnormal grain growth disappeared and homogeneous ultrafine grain structure formed, i.e., the grain growth inhibitor promoted sintering densification process. WC grains were refined by the comprehensive effects of the Cr3C2/NbC dissolving in the Co phase to alter the interface energy and interfere the WC solution in the binder phase, which prevents the structure of cobalt change from the face-center-cubic into dense-hexagonal crystal, and to increases the transverse rupture strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

794-800

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kawakami, O. Terada, K. Hayashi, J. Jpn. Soc. Powder Powder Metall. 2004; 51: 576.

Google Scholar

[2] Schubert WD, Lassner E. Brussels: ITIA Newslette r; June 2007. pp.2-10.

Google Scholar

[3] Tjong S.C. and Chen H. Mater. Sci. Eng R, 2004, 45: 1.

Google Scholar

[4] Wenbin Liu, Xiaoyan Song, Jiuxing Zhang, Guozhen Zhang, Xuemei Liu. Materials Chemistry and Physics, 2008, 109: 235–240.

Google Scholar

[5] L.E. McCandlish, B.H. Kear. Nanostructured Materials, 1992, 1(2): 119-124.

Google Scholar

[6] X.M. Ma, J.I. Gang, J. Alloys and Compounds, 1996, 245: L30-L32.

Google Scholar

[7] Zongyin Zhang, Sverker Wahlberg, Mingsheng Wang, Mamoun Muhammed. Nanostructured Materials, 1999, 12: 163-166.

Google Scholar

[8] L. Fu, L.H. Cao, Y.S. Fan. Scripta Materialia, 2001, 44: 1061-1068.

Google Scholar

[9] Wenbin Liu, Xiaoyan Song, Jiuxing Zhang, Fuxing Yin. Nanostructured Materials, 2008, 458: 36-371.

Google Scholar

[10] PETERSSON A, Agren J. Acta Materials, 2005, 53(6): 1665-1671.

Google Scholar

[11] MORTON C W, WILLS D J, STJERNBERG K. Int J Ref Met Mat, 2005, 23(4-6): 287-293.

Google Scholar

[12] Arenas, F, de Arenas, I. B, Ochoa, J, Cho, S. -A. International Journal of Refractory Metals & Hard Materials. 1999, 17: 91-97.

DOI: 10.1016/s0263-4368(98)00061-4

Google Scholar

[13] S.G. Huang,L. Li, K. Vanmeensel, J. Vleugels. International Journal of Refractory Metals & Hard Materials. 2007, 25(5-6): 417-422.

Google Scholar

[14] Carroll D.F. Int. J. Refract. International Journal of Refractory Metals & Hard Materials. 1999, 17: 123-132.

Google Scholar

[15] Gille G, Szesny B, Dreyer K, van den Berg H, Schmidt J, Gestrich T, Leitner G. International Journal of Refractory Metals & Hard Materials. 2002, 20(1) : 3-22.

DOI: 10.1016/s0263-4368(01)00066-x

Google Scholar

[16] Da Silva A.G. P, De Souza C. P, Gomes U. U, Medeiros F. F, Ciaravino C, Roubin M. Materials Science and Engineering: A. 2000, 293(1-2): 242-246.

DOI: 10.1016/s0921-5093(00)00993-x

Google Scholar

[17] A. Delanoe, M. bacia, E. Pauty, S. Lay, C.H. Allibert. Journal of Crystal Growth. 2004, 270: 219-227.

Google Scholar

[18] BangWei Zhang, Shuzhi Lia. Shanghai metals. 1999, 21(2): 3-10.

Google Scholar

[19] Choi K, Hwang.N. R, Kim D.Y. Powder Metal. 2000, 43: 168-17.

Google Scholar