Fabrication of Zn Alloy Foam via Powder Metallurgical Approach

Article Preview

Abstract:

Powder metallurgical (PM) route is one of the methods for metal foam fabrication. In this paper, we report the fabrication of Zn alloy foams with 0~50wt.% Mg via powder metallurgical approach by using CaCO3 as the blowing agent. The fabrication process included 5 steps: powders mixing, cool-pressing, heat treatment, hot-pressing, foaming and cooling. The effects of Mg addition, foaming temperature on the foaming process were discussed. Finally, the compressive behavior of Zn alloy foam was evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

819-824

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6) (2001): 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] Mondal, D.P., Goel, M.D., Das, S., Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Materials Science and Engineering: A, 507(1–2) (2009): 102-109.

DOI: 10.1016/j.msea.2009.01.019

Google Scholar

[3] Goel, M.D., Peroni, M., Solomos, G., et al., Dynamic compression behavior of cenosphere aluminum alloy syntactic foam. Materials & Design, 42(2012): 418-423.

DOI: 10.1016/j.matdes.2012.06.013

Google Scholar

[4] Mondal, D.P., Goel, M. D., Bagde, N., et al., Closed cell ZA27–SiC foam made through stir-casting technique. Materials & Design, 57 (2014): 315-324.

DOI: 10.1016/j.matdes.2013.12.026

Google Scholar

[5] Liu, J., Yu, S., Song, Y., et al., Dynamic compressive strength of Zn–22Al foams. Journal of alloys and compounds, 476(1) (2009): 466-469.

DOI: 10.1016/j.jallcom.2008.09.007

Google Scholar

[6] Liu, J., Yu, S., Zhu, X., et al., The compressive properties of closed-cell Zn-22Al foams. Materials Letters, 62(4) (2008): 683-685.

DOI: 10.1016/j.matlet.2007.06.032

Google Scholar

[7] Yu, S., Liu, J., Wei, M., et al., Compressive property and energy absorption characteristic of open-cell ZA22 foams. Materials & Design, 30(1) (2009): 87-90.

DOI: 10.1016/j.matdes.2008.04.041

Google Scholar

[8] Daoud, A., Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Materials Science and Engineering: A, 488(1) (2008): 281-295.

DOI: 10.1016/j.msea.2007.11.020

Google Scholar

[9] Kitazono, K., Takiguchi, Y., Strain rate sensitivity and energy absorption of Zn–22Al foams. Scripta materialia, 55(6) (2006): 501-504.

DOI: 10.1016/j.scriptamat.2006.06.001

Google Scholar

[10] Umashankar, C., Jha, K., Mahule, K.N., et al., Aluminium Foam Fabrication by Powder Metallurgy Route. Barc Newsletter, (2011): 39-43.

Google Scholar

[11] Neu, T., Mukherjee, M., Garcia-Moreno, F., et al. Magnesium and magnesium alloy foams. In 7th International Conference on Porous Metals and Metallic Foams (MetFoam2011). (2011).

Google Scholar

[12] Matijasevic-Lux, B., Banhart, J., Fiechter, S., et al., Modification of titanium hydride for improved aluminium foam manufacture. Acta Materialia, 54(7) (2006): 1887-(1900).

DOI: 10.1016/j.actamat.2005.12.012

Google Scholar

[13] Yang, D.H., Hur, B.Y., Yang, S.R., Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent. Journal of alloys and compounds, 461(1) (2008): 221-227.

DOI: 10.1016/j.jallcom.2007.07.098

Google Scholar

[14] Yang, D.H., Hu, Z.Y., Chen, W.P., et al. Mg Alloy Foam Fabrication via Powder Metallurgy and its Compressive Behavior. Materials Science Forum, 817(2015): 621-626.

DOI: 10.4028/www.scientific.net/msf.817.621

Google Scholar