Fabrication of W-Cu/Lu2O3 Composites with High Strength and Electrical Conductivity Prepared by Electroless Plating and Powder Metallurgy

Article Preview

Abstract:

W–Cu (0, 0.25, 0.75, 1.5, and 3 wt.%)/Lu2O3 composite materials were prepared through electroless plating with simplified pretreatment method and powder metallurgy. The phases and morphologies of the W–Cu/Lu2O3 composites were characterized by X-ray diffraction, field emission scanning electron microscopy and energy dispersive spectroscopy. The relative density, microhardness, electrical conductivity, and bending strength of the sintered samples were examined. The experimental results show that W–Cu composites with uniform structures can be obtained with pretreated W using the simplified method, followed by electroless Cu plating. The microstructure and properties of the composites were significantly affected by the addition of Lu2O3 nanoparticles, resulting in high electrical conductivity and strength. The electrical conductivity of W–Cu/1.5 wt.% Lu2O3 composites reached 63.3%, which is higher than the national standard value of 50.71%. The bending strength of W–Cu/1.5 wt. % Lu2O3 reached 1306.7 MPa, which is 65.41% higher than the national standard. These results may be attributed to the uniform distribution of refined particles with Lu2O3 content increased to 1.5 wt. %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

825-830

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M Luo, Z. L Lu, X. M Huang, X. Y Tan, G. N Luo, J. G Cheng, X Zan, X. Y Zhu, Y. C Wu, Fabrication of W-Ce/La2O3 composite powder with a novel pretreatment prepared by electroless plating and its sintering characteriazation, Int. J. Refract. Met. H. 48(2015).

DOI: 10.1016/j.ijrmhm.2014.07.020

Google Scholar

[2] F.A.D. Costa, A.G.P.D. Silva, U.U. Gomes, The influence of the dispersion technique on the characteristics of the W-Cu powders and on the sintering behaviour, Powder, Technol. 134(2003) 123–132.

DOI: 10.1016/s0032-5910(03)00123-2

Google Scholar

[3] M. Hasshempour, H. Razavizadeh, H.R. Rezaie, M.T. Salehi, Thermochemical preparation of W-25%Cu nanocomposite powder through a CVT mechanism, Mater. Charact. 60(2009) 1232-1240.

DOI: 10.1016/j.matchar.2009.05.001

Google Scholar

[4] M.P. Echlin, A. Mottura, M. Wang, P.J. Mignone, D.P. Riley. G.V. Franks, T. M, Pollock. Three-dimensional characterization of permeability of W-Cu composites using a new Tribeam, technique, Acta. Mater. 64(2014) 307–315.

DOI: 10.1016/j.actamat.2013.10.043

Google Scholar

[5] X. H Yang, S.H. Liang, X.H. Wang, P. Xiao , Z. K. Fan, Effect of WC and CeO2 on microstructure and properties of W-Cu electrical contact material, Int. J. Refract. Met. H.; 28(2010) 305–311.

DOI: 10.1016/j.ijrmhm.2009.11.009

Google Scholar

[6] C. P Wang, L.C. Lin, L.S. Xu, W.W. Xu, J.P. Song, X.J. Liu, Y. Yu, Effect of blue tungsten oxide on skeleton sintering and infiltration of W-Cu composites, Int. J. Refract. Met. H. 41(2013) 236–240.

DOI: 10.1016/j.ijrmhm.2013.04.007

Google Scholar

[7] L.M. Zhang, W.S. Chen, G.Q. Luo, P.J. Chen, Q. Shen, C.B. Wang, Low-temperature densification and excellent thermal properties of W-Cu thermal-management composites prepared from copper-coated tungsten powders, J. Alloys. Compds. 588(2014) 49–52.

DOI: 10.1016/j.jallcom.2013.11.003

Google Scholar

[8] H. Ibrahim, A. Aziz, A. Rahmat, Enhanced liquid-phase sintering of W-Cu composites by liquid infiltration, Int. J. Refract. Met. Hard. Mate. 43(2014) 222–226.

DOI: 10.1016/j.ijrmhm.2013.12.004

Google Scholar

[9] F. Dore, S. Lay, N. Eustathopoulos, C.H. Allbert, Segregation of Fe during the sintering of doped W-Cu Alloys, Scr. Mater. 49(2003) 237–242.

DOI: 10.1016/s1359-6462(03)00244-6

Google Scholar

[10] P.G. Chen, Q. Shen, G.Q. Luo, M.J. Li, L.M. Zhang, The mechanical properties of W-Cu composite by activated sintering, Int. J. Refract. Met. H. 36(2013) 220–224.

Google Scholar

[11] D.G. Kim, G.S. Kim, M.J. Suk, S.T. Oh, Y.D. Kim, Effect of heating rate on mocrostructural homogeneity of sintered W-15%Cu nanocomposite fabricated from W-CuO powder mixture, Scr. Mater. 51(2004) 677–681.

DOI: 10.1016/j.scriptamat.2004.06.014

Google Scholar

[12] K.Z. Madar, M. Amirjan, N. Parvin, Improve of physical properties of Su-inflitrated W compacts via electroless nickel plating of primary tungsten powder, Surf. Coat. Tech. 203(2009) 2333–6.

DOI: 10.1016/j.surfcoat.2009.02.055

Google Scholar

[13] L.M. Huang, L.M. Luo, X.Y. Ding, G.N. Luo, X. Zan, J.G. Cheng, Y.C. Wu, Effects of simplified pretreatment process on the morphology of W-Cu composite powder prepared by electroless plating and its sintering characterization, Powder. Technol. 258(2014).

DOI: 10.1016/j.powtec.2014.03.027

Google Scholar

[14] L.M. Luo, X.Y. Tan, Z.L. Lu, X.Y. Zhu, X. Zan, G.M. Luo, Y.C. Wu, Sintering behaviour of W-30Cu composite powder prepared by electroless plating, Int. J. Refract. Met. H. 42(2014) 51–56.

DOI: 10.1016/j.ijrmhm.2013.10.012

Google Scholar

[15] K. Zhang, W.P. Shen, C.C. Ge. Properties of W/Cu FGMs containing 1% TiC or 1% La2O3 prepared using GSUHP, Acta Metallurgica Sinica 20(2007) 59–64.

DOI: 10.1016/s1006-7191(07)60008-8

Google Scholar

[16] K.W. Hu, M.Z. Chen, H. Ye. Electrical breakdown characteristic of a Ce-doped W-Cu contact material, Rare Metals 29(2010) 261.

DOI: 10.1007/s12598-010-0045-z

Google Scholar

[17] L.M. Luo, Y.C. Wu, J. Li. Preparation of nickel-coated tungsten carbides powders by temperature ultrasonic-assisted electroless plating, Surf. Coat. Tech. 206(2011) 1091–1095.

DOI: 10.1016/j.surfcoat.2011.07.078

Google Scholar