[1]
W. David, PM structural parts move to higher density and performance, Powder Metall. 50 (2007)99-105.
DOI: 10.1179/174329007x209114
Google Scholar
[2]
E. Ilia, The effect of copper precipitation on mechanical properties at operating temperature of the materials used to manufacture powder forged connecting rods, The 2014 Powder Metallurgy World Congress & Exhibition, Orlando, United States, 2014, May, 18-22.
Google Scholar
[3]
V. A. Maslyuk, A. A. Mamonova, A. I. Danilenko, Effect of fine structure on mechanical properties of hot-forged powder steels, Powder Metall. Met. Ceram. 46 (2007) 385-391.
DOI: 10.1007/s11106-007-0060-2
Google Scholar
[4]
C. Menapace, N. Vicente Jr, A. Molinari, Hot forging of Ti-6Al-4V alloy performs produced by spark sintering of powders, Powder Metall. 56 (2013) 102-110.
DOI: 10.1179/1743290112y.0000000003
Google Scholar
[5]
D. W. Wolla, M. J. Davidson, A. K. Khanra, Studies on the formability of powder metallurgical aluminum-copper composite, Mater. Des. 59 (2014) 151-159.
DOI: 10.1016/j.matdes.2014.02.049
Google Scholar
[6]
T. C. Joshi, U. Prakash, V. V. Dabhade, Microstructure development during hot forging of Al 7075 powder, J. Alloy. Compd. 639 (2015) 123-130.
DOI: 10.1016/j.jallcom.2015.03.099
Google Scholar
[7]
Y. C. Lin, X. M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des. 32 (2011) 1733-1759.
DOI: 10.1016/j.matdes.2010.11.048
Google Scholar
[8]
M. A. Taleghani Jabbari, E. M. Navas Ruiz, M. Salehi, J. M. Torralba, Hot deformation behavior and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures, Mater. Sci. Eng. A 534 (2012) 624-631.
DOI: 10.1016/j.msea.2011.12.019
Google Scholar
[9]
R. Bhattacharya, Y. J. Lan, B. P. Wynne, B. Davis, W. M. Rainforth, Constitutive equations of flow stress of magnesium AZ31 under dynamically recrystallizing conditions, J. Mater. Process. Technol. 214 (2014) 1408-1417.
DOI: 10.1016/j.jmatprotec.2014.02.003
Google Scholar
[10]
A. Rajeshkannan, K. S. Pandey, S. Shanmugam, R. Narayanasamy, Deformation behavior of sintered high carbon alloy powder metallurgy steel in powder preform forging, Mater. Des. 29 (2008) 1862-1867.
DOI: 10.1016/j.matdes.2007.02.006
Google Scholar
[11]
T. K. Kandavel, R. Chandramouli, D. Shanmugasundaram, Experimental study of the plastic deformation and densification behavior of some sintered low alloy P/M steels, Mater. Des. 30 (2009) 1768-1776.
DOI: 10.1016/j.matdes.2008.07.027
Google Scholar
[12]
K. M. Xue, X. X. Wang, P. Li, C. Wang, X. Zhang, Numerical simulation and experiment of pure molybdenum powder sintered material with porosities during ECAP, Chin. J. Nonferrous Met. 21 (2011) 198-204.
Google Scholar
[13]
D. W. Wolla, M. J. Davidson, A. K. Khanra, Constitutive modeling of powder metallurgy processed Al-4%Cu performs during compression at elevated temperature, Mater. Des. 65 (2015) 83-93.
DOI: 10.1016/j.matdes.2014.08.069
Google Scholar
[14]
K. S. Narasimhan, Sintering of powder mixtures and the growth of ferrous powder metallurgy, Mater. Chem. Phys. 67 (2001) 56-65.
DOI: 10.1016/s0254-0584(00)00420-x
Google Scholar
[15]
A. Basaran, N. Kurgan, R. Varol, Investigation of fatigue properties of shot peened and plasma nitrocarburized P/M FC0205 steel, J. Mech. Sci. Technol. 27(2013) 2315-2322.
DOI: 10.1007/s12206-013-0615-8
Google Scholar
[16]
R. Narayanasamy, V. Anandakrishnan, K. S. Pandey, Effect of carbon content on instantaneous strain-hardening behavior of powder metallurgy steels, Mater. Sci. Eng. A, 497 (2008) 505-511.
DOI: 10.1016/j.msea.2008.07.053
Google Scholar
[17]
Y. C. Lin, M. X. Chen, D. X. Wen, M. S. Chen, A physically-based constitutive model for a typical nickel-based superalloy, Comput. Mater. Sci. 84 (2014) 282-289.
DOI: 10.1016/j.commatsci.2013.11.003
Google Scholar