[1]
O.C. Compton, S.B.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, small. 6 (2010) 711-723.
DOI: 10.1002/smll.200901934
Google Scholar
[2]
C. Su, K.P. Loh, Carbocatalysts: graphene oxide and its derivatives, Accounts Chem. Res. 46 (2013) 2275-2285.
DOI: 10.1021/ar300118v
Google Scholar
[3]
G. Wang, B. Wang, J. Park, J. Yang, X. Shen, J. Yao, Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon, 47 (2009) 68-72.
DOI: 10.1016/j.carbon.2008.09.002
Google Scholar
[4]
X.C. He, C.X. Zhang, J.H. Pi, X.Y. Chen, Photoconductivity from photochemical N-doped graphene oxide thin films, Mater. Res. Innov. 19 (2015) 11-14.
Google Scholar
[5]
N. Kostoglou, V. Tzitzios, A.G. Kontos, K. Giannakopoulos, C. Tampaxis, A. Papavasiliou, G. Charalambopoulou, T. Steriotis, Y. Li, K. Liao, K. Polychronopoulou, C. Mitterer, C. Rebholz, Synthesis of nanoporous graphene oxide adsorbents by freeze-drying or microwave radiation: Characterization and hydrogen storage properties, Int. J. Hydrogen Energ. 40 (2015).
DOI: 10.1016/j.ijhydene.2015.03.053
Google Scholar
[6]
L.L. Cao, S.M. Yin, Y.B. Liang, J.M. Zhu, C. Fang, Z.C. Chen, Preparation and characterisation of magnetic Fe3O4/graphene oxide nanocomposites, Mater. Res. Innov. 19 (2015) 364-368.
Google Scholar
[7]
C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev. 43 (2014) 291-312.
DOI: 10.1039/c3cs60303b
Google Scholar
[8]
L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai, J. Ye, C. Wei, S.P. Lau, Bottom-up synthesis of large-scale graphene oxide nanosheets, J. Mater. Chem. 22 (2012) 5676-5683.
DOI: 10.1039/c2jm15944a
Google Scholar
[9]
Z. Gao, J. Wang, H. Yan, Y. Yao, J. Ma, Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance, Electrochim. Acta. 91 (2013) 185-194.
DOI: 10.1016/j.electacta.2012.12.119
Google Scholar
[10]
M. González-Barriuso, A. Yedra, P. Mantilla, C. Manteca-Martínez. Synthesis and characterization of reduced graphene oxide from graphite waste and HOPG, Mater. Res. Innov. 19 (2015) 192-195.
DOI: 10.1179/1433075x14y.0000000241
Google Scholar
[11]
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii , Z. Sun , A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano. 4 (2010) 4806-4814.
DOI: 10.1021/nn1006368
Google Scholar
[12]
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.
DOI: 10.1002/adma.201001068
Google Scholar
[13]
J.T. Park, J.H. Kim, D. Lee, Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings, Nanoscale. 6 (2014) 7362-7368.
DOI: 10.1039/c4nr00919c
Google Scholar
[14]
X. Hu, Y. Yu, J. Zhou, L. Song, Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide, Nano. 9 (2014) 1450037.
DOI: 10.1142/s1793292014500374
Google Scholar
[15]
K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, 53 (2013) 38-49.
DOI: 10.1016/j.carbon.2012.10.013
Google Scholar
[16]
X. Hu, Y. Yu, W. Hou, J. Zhou, L. Song, Effects of particle size and pH value on the hydrophilicity of graphene oxide, Appl. Surf. Sci. 273 (2013) 118-121.
DOI: 10.1016/j.apsusc.2013.01.201
Google Scholar
[17]
J. Shen, M. Shi, H. Ma, B. Yan, L. Na, Y. Hu, Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets, J. colloid. Interf. Sci. 352 (2010) 366-370.
DOI: 10.1016/j.jcis.2010.08.036
Google Scholar
[18]
L. Kou, C. Gao, Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings, Nanoscale. 3 (2011) 519-528.
DOI: 10.1039/c0nr00609b
Google Scholar
[19]
X. Hu, Y. Yu, Y. Wang, J. Zhou, L. Song, Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution, Appl. Surf. Sci. 329 (2015) 83-86.
DOI: 10.1016/j.apsusc.2014.12.110
Google Scholar
[20]
A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation, ACS nano. 8 (2014) 3060-3068.
DOI: 10.1021/nn500606a
Google Scholar
[21]
A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. An'amt, B.Y.S. Chang, N. Yusoff, I. Harrison, H.N. Lim, C.H. Chia, S.V. Kumar, Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites, Mater. Lett., 80 (2012).
DOI: 10.1016/j.matlet.2012.04.061
Google Scholar
[22]
Y. Gong, X. Meng, C. Zou, Y. Yao, W. Fu, M. Wang, G. Yin, Z. Huang, X. Liao, X. Chen, A facile one-pot synthesis of yolk-shell ZnO microsphere-graphene composite induced by graphene oxide, Mater. Lett. 106 (2013) 171-174.
DOI: 10.1016/j.matlet.2013.04.089
Google Scholar
[23]
Y. Yang, T. Liu, Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid, Appl. Surf. Sci. 257 (2011) 8950-8954.
DOI: 10.1016/j.apsusc.2011.05.070
Google Scholar
[24]
C. Cao, M. Daly, C.V. Singh, Y. Sun, T. Filleter, High strength measurement of monolayer graphene oxide, Carbon. 81 (2015), 497-504.
DOI: 10.1016/j.carbon.2014.09.082
Google Scholar
[25]
J.I. Paredes, S.V. Rodil, A.M. Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents, Langmuir. 24 (2008) 10560-10564.
DOI: 10.1021/la801744a
Google Scholar
[26]
S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon. 44 (2006) 3342-3347.
DOI: 10.1016/j.carbon.2006.06.004
Google Scholar
[27]
R. Rasuli, Z. Mokarian, R. Karimi, H. Shabanzadeh, Y. Abedini, Wettability modification of graphene oxide by removal of carboxyl functional groups using non-thermal effects of microwave, Thin Solid Films, 589 (2015) 364-368.
DOI: 10.1016/j.tsf.2015.06.002
Google Scholar
[28]
H. Zanin, E. Saito, H.J. Ceragioli, V. Baranauskas, E.J. Corat, Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices, Mater. Res. Bull. 49 (2014) 487-493.
DOI: 10.1016/j.materresbull.2013.09.033
Google Scholar