[1]
K. Masamura, S.J. Hashizume, Y Inohara, Yusuke Minami, Estimation models of corrosion rates of 13% Cr alloys in CO2 environments, Corrosion. (1999) 25-30.
Google Scholar
[2]
J.F. Chen, R John. Shadley, and E.F. Rybicki, Activation/repassivation behavior of 13Cr in CO2 and sand environments using a modified electrochemical noise technique, Corrosion. (2002) 7-11.
Google Scholar
[3]
H. Zhang, Y. L. Zhao, and Z. D. Jiang, Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl− environment, Mater. Lett. 59 (2005) 3370-3374.
DOI: 10.1016/j.matlet.2005.06.002
Google Scholar
[4]
S.A.M. Refaey, F. Taha, and AM Abd El-Malak, Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl− and Br− anions, Appl. Surf. Sci. 242 (2005) 114-120.
DOI: 10.1016/j.apsusc.2004.08.003
Google Scholar
[5]
L. Yan, L.N. Xu, M.X. Lu, Y. Meng, J.Y. Zhu, L. Zhang, Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt, Appl. Surf. Sci. 314 (2014) 768-776.
DOI: 10.1016/j.apsusc.2014.07.067
Google Scholar
[6]
Z.Y. Liu, X.Z. Wang, R.K. Liu, C.W. Du, X.G. Li, Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular Environment, Journal of. J. Mater. Eng. Perform. 23 (2014) 1279-1287.
DOI: 10.1007/s11665-013-0855-x
Google Scholar
[7]
H. Wu, L. Liu, L. Wang, Y. Liu, Influence of chromium on mechanical properties and CO2/H2S corrosion behavior of P110 grade tube steel, J. Iron. St. 21 (2014) 76-85.
DOI: 10.1016/s1006-706x(14)60012-1
Google Scholar
[8]
S.D. Zhu, H.X. Ma, J.L. Li, Z.G. Yang, Effect of Elemental Sulfur on Corrosion Behavior of Super 13Cr Martensitic Stainless Steel, Appl. Mech. Mat. 556-562 (2014) 162-165.
DOI: 10.4028/www.scientific.net/amm.556-562.162
Google Scholar
[9]
ASTM Standard G31, Practice for Laboratory immersion corrosion testing of metals. ASTM International.
Google Scholar
[10]
ISO 8407, Corrosion of metals and alloys-removal of corrosion products from corrosion test specimens. International Standardization Organization.
DOI: 10.3403/30346599
Google Scholar
[11]
P.P. Bai, S.Q. Zheng, C.F. Chen, Electrochemical characteristics of the early corrosion stages of API X52 steel exposed to H2S environment, Mater. Chem. Phys. 149 (2015) 295-301.
DOI: 10.1016/j.matchemphys.2014.10.020
Google Scholar
[12]
J.Y. Hong, Y.T. Shin, H.W. Lee, Characterization of corrosion resistance in a ferritic stainless steel stabilized with Ti addition, Int. J. Electrochem. Sci., 9 (2014) 7325 - 7334.
DOI: 10.1016/s1452-3981(23)10970-9
Google Scholar
[13]
I. T. Kong, C.H. Koo, Antibacterial properties, Corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Mater. Sci. Eng. A, 393(2005) 213-222.
DOI: 10.1016/j.msea.2004.10.032
Google Scholar
[14]
A. Barbucci, G. Ceriola, P.L. Cabot, Effect of cold-working in the passive behavior of 304 stainless steel in sulfate media, J. Electrochem. Soc, 149 (2012) 534-542.
DOI: 10.1149/1.1516774
Google Scholar
[15]
L.B. Niu, K. Nakada, Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel, Corros. Sci, 96 (2015) 171-177.
DOI: 10.1016/j.corsci.2015.04.005
Google Scholar
[16]
M. A. Javed, P. R Stoddart, S. A Wade, Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions, Corros. Sci. 93 (2015) 48-57.
DOI: 10.1016/j.corsci.2015.01.006
Google Scholar
[17]
J.M. Kolotyrkin, Pitting corrosion of metals, Corrosion, 19 (1963) 261-268.
Google Scholar
[18]
G.S. Frankel, Pitting corrosion of metals a review of the critical factors, J. Electrochem. Soc, 145 (1998) 2186-2198.
DOI: 10.1149/1.1838615
Google Scholar