[1]
J.A. Spittle, Columnar to equiaxed grain transition in as solidified alloys, Int. Mater. Rev., 51 (2006) 247-269.
DOI: 10.1179/174328006x102493
Google Scholar
[2]
R.S. Rerko, H.C. de Groh Iii, C. Beckermann, Effect of melt convection and solid transport on macrosegregation and grain structure in equiaxed Al–Cu alloys, Mater. Sci. Eng. A, 347 (2003) 186-197.
DOI: 10.1016/s0921-5093(02)00592-0
Google Scholar
[3]
H. Jung, N. Mangelinck-Noël, H. Nguyen-Thi, B. Billia, Columnar to equiaxed transition during directional solidification in refined Al-based alloys, J. Alloys Compd., 484 (2009) 739-746.
DOI: 10.1016/j.jallcom.2009.05.029
Google Scholar
[4]
J.L. Fife, P.W. Voorhees, The morphological evolution of equiaxed dendritic microstructures during coarsening, Acta Mater., 57 (2009) 2418-2428.
DOI: 10.1016/j.actamat.2009.01.036
Google Scholar
[5]
A. Ramani, C. Beckermann, Dendrite tip growth velocities of settling NH4Cl equiaxed crystals, Scripta Mater., 36 (1997) 633-638.
DOI: 10.1016/s1359-6462(96)00435-6
Google Scholar
[6]
I. Steinbach, H.J. Diepers, C. Beckermann, Transient growth and interaction of equiaxed dendrites, J. Cryst. Growth, 275 (2005) 624-638.
DOI: 10.1016/j.jcrysgro.2004.12.041
Google Scholar
[7]
V. Pines, A. Chait, M. Zlatkowski, B. Christoph, Equiaxed dendritic solidification in supercooled melts, J. Cryst. Growth, 197 (1999) 355-363.
DOI: 10.1016/s0022-0248(98)00901-4
Google Scholar
[8]
B. Böttger, J. Eiken, I. Steinbach, Phase field simulation of equiaxed solidification in technical alloys, Acta Mater., 54 (2006) 2697-2704.
DOI: 10.1016/j.actamat.2006.02.008
Google Scholar
[9]
R. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, A. Snigirev, Time resolved x-ray imaging of dendritic growth in binary alloys, Phys. Rev. Lett., 83 (1999) 5062.
DOI: 10.1103/physrevlett.83.5062
Google Scholar
[10]
A.G. Murphy, W.U. Mirihanage, D.J. Browne, R.H. Mathiesen, Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiography, Acta Mater., 95 (2015) 83-89.
DOI: 10.1016/j.actamat.2015.04.060
Google Scholar
[11]
T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, Q.X. Yuan, Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography, J. Alloys Compd., 616 (2014).
DOI: 10.1016/j.jallcom.2014.07.172
Google Scholar
[12]
A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, J. Baruchel, Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography, Acta Mater., 61 (2013) 1303-1315.
DOI: 10.1016/j.actamat.2012.11.008
Google Scholar
[13]
J. Zhu, T. Wang, F. Cao, W. Huang, H. Fu, Z. Chen, Real time observation of equiaxed growth of Sn–Pb alloy under an applied direct current by synchrotron microradiography, Mater. Lett., 89 (2012) 137-139.
DOI: 10.1016/j.matlet.2012.08.094
Google Scholar
[14]
A. Bogno, H. Nguyen-Thi, N. Bergeon, N. Mangelinck-Noël, T. Schenk, B. Billia, E. Boller, J. Baruchel, Application of synchrotron X-ray radiography to the study of dendritic equiaxed microstructure formation in Al–Cu alloys, Nucl. Instrum. Methods Phys. Res., Sect. B, 268 (2010).
DOI: 10.1007/s12666-009-0058-1
Google Scholar
[15]
A. Bogno, H. Nguyen-Thi, B. Billia, N. Bergeon, N. Mangelinck-Noel, E. Boller, T. Schenk, J. Baruchel, In situ analysis of dendritic equiaxed microstructure formation in Al-Cu alloys by synchrotron X-ray radiography, Trans. Indian Inst. Met., 62 (2009).
DOI: 10.1007/s12666-009-0058-1
Google Scholar
[16]
A. Bogno, H. Nguyen-Thi, B. Billia, G. Reinhart, N. Mangelinck-Noël, N. Bergeon, T. Schenk, J. Baruchel, In situ and real-time analysis of the growth and interaction of equiaxed grains by synchrotron X- ray radiography, IOP Conf. Series: Mater. Sci. Eng., 27 (2012).
DOI: 10.1088/1757-899x/27/1/012089
Google Scholar