[1]
H.X. Jiang, J.Z. Zhao, C.P. Wang, X.J. Liu, Effect of electric current pulses on solidification of immiscible alloys, Materials Letters. 132 (2014) 66-69.
DOI: 10.1016/j.matlet.2014.06.017
Google Scholar
[2]
D. Räbiger, Y.H. Zhang, V. Galindo, S. Franke, B. Willers, S. Eckert, The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents, Acta Materialia. 79 (2014) 327-338.
DOI: 10.1016/j.actamat.2014.07.037
Google Scholar
[3]
L. Bolzoni, N. Hari Babu, Refinement of the grain size of the LM25 alloy (A356) by 96Al-2Nb-2B master alloy, Journal of Materials Processing Technology, 222 (2015) 219-223.
DOI: 10.1016/j.jmatprotec.2015.03.011
Google Scholar
[4]
R. Haghayeghi, P. Kapranos, Grain refinement of AA7075 alloy under combined magnetic fields, Materials Letters. 151 (2015) 38-40.
DOI: 10.1016/j.matlet.2015.03.026
Google Scholar
[5]
T.M. Wang, J.J. Xu, T.Q. Xiao, H.L. Xie, J. Li, T.J. Li, Z.Q. Cao, Evolution of dendrite morphology of a binary alloy under an applied electric current: An in situ observation, Physical Review E. 81(2010) 042601.
DOI: 10.1103/physreve.81.042601
Google Scholar
[6]
G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z. Ren, N. Mangelinck-Noel, X. Li, Y. Fautrelle, Henri Nguyen-Thi, Motion of equiaxed grains during directional solidification under static magnetic field, Journal of Crystal Growth. 417 (2015).
DOI: 10.1016/j.jcrysgro.2014.10.058
Google Scholar
[7]
F. Li, L.L. Regel, W.R. Wilcox, The influence of electric current pulses on the microstructure of the MnBi/Bi eutectic, Journal of Crystal Growth. 223 (2001) 251-264.
DOI: 10.1016/s0022-0248(00)00991-x
Google Scholar
[8]
Chintamani Mande, N.V. Joshi, Effect on grain size due to passage of electric current during solidification of Cadmium, Defence Sience Journal. 16 (1966) 187-190.
Google Scholar
[9]
J. Zhu, T.M. Wang, F. Cao, W.X. Huang, H.W. Fu, Z.N. Chen, Real time observation of equiaxed growth of Sn-Pb alloy under an applied direct current by synchrotron microradiography, Materials Letters. 89 (2012) 137-139.
DOI: 10.1016/j.matlet.2012.08.094
Google Scholar
[10]
A.G. Murphy, W.U. Mirihanage, D.J. Browne, R.H. Mathiesen, Equiaxed dendritic solidification and grain refiner potency characterized through in situ X-radiograpy, Acta Materialia. 95 (2015) 83-89.
DOI: 10.1016/j.actamat.2015.04.060
Google Scholar
[11]
F. Chen, F. Mao, Z.J. Xuan, G.Y. Yan, J.Y. Han, T.M. Wang, Z.Q. Cao, Y.N. Fu, T.Q. Xiao, Real time investigation of the grain refinement dynamics in zinc alloy by synchrotron microradiography, Journal of Alloys and Compounds. 630 (2015) 60-67.
DOI: 10.1016/j.jallcom.2015.01.021
Google Scholar
[12]
A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, J. Baruchel, Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography, Acta Materialia. 61 (2013) 1303-1315.
DOI: 10.1016/j.actamat.2012.11.008
Google Scholar
[13]
H. Nguyen Thi, J. Gastaldi, T. Schenk, G. Reinhart, N. Mangelinck-Noel, V. Cristiglio, B. Billia, B. Grushko, J. Härtwig, H. Klein, J. Baruchel, In situ and real-time probing of quasicrystal solidification dynamics by synchrotron imaging, Physical Review E. 74 (2006).
DOI: 10.1103/physreve.74.031605
Google Scholar
[14]
T.M. Wang, J. Zhu, H.J. Kang, Z.N. Chen, Y.N. Fu, W.X. Huang, T.Q. Xiao, In situ synchrotron X-Ray imaging on morphological evolution of dendrites in Sn-Bi hypoeutectic alloy under electric currents, Applied Physics A. 117 (2012) 1059-1066.
DOI: 10.1007/s00339-014-8537-6
Google Scholar
[15]
H. Men, Z. Fan, Effects of solute cotent on grain refinement in an isothermal melt, Acta Materialia. 59 (2011) 2704-2712.
DOI: 10.1016/j.actamat.2011.01.008
Google Scholar
[16]
D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, L. Katgerman, In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy, Acta Materialia. 55 (2007) 4287-4292.
DOI: 10.1016/j.actamat.2007.03.030
Google Scholar